Размножение организмов и его роль в процессе эволюции. Мейоз

Размножение, или репродукция, присущая всем живым существам функция воспроизведения себе подобных. В отличие от всех других жизненно важных функций организма, размножение направлено не на поддержание жизни отдельной особи, а на сохранение ее генов в потомстве и продолжение рода – тем самым на сохранение генофонда популяции, вида, семейства и т.д. В ходе эволюции у разных групп организмов сформировались – во многих случаях независимо – разные пути и стратегии размножения, и тот факт, что эти группы выжили и существуют, доказывает эффективность разных способов осуществления данного процесса.Половой процесс и эволюция размножения

Многие организмы, размножающиеся бесполым путем, все же изобрели ряд способов, с помощью которых они время от времени совершают обмен генетическим материалом между двумя клетками одного вида. Такой обмен получил название полового процесса. У большинства форм он осуществляется путем конъюгации (соединения). Классический пример конъюгации демонстрируют инфузории. Две их особи временно соединяются ротовыми аппаратами, и между ними образуется цитоплазматический мостик, по которому происходит обмен ядерным материалом. Этому обмену предшествует мейотическое деление ядра (микронуклеуса). По завершении обмена клетки расходятся и затем размножаются путем деления (митоза).

У некоторых бактерий при конъюгации происходит однонаправленный перенос линейной последовательности генов хромосомы от «мужской» клетки (донора) к «женской» (реципиенту), причем величина переносимого фрагмента обычно зависит от времени контакта клеток.

Таким образом, половой процесс сводится не к размножению, а к созданию в клетке новых комбинаций генов; собственно размножение происходит бесполым путем.

Чередование поколений. Многие организмы могут размножаться как бесполым, так и половым путем. При этом говорят о разных поколениях данного вида. Если они закономерно сменяют друг друга, такое явление называется чередованием поколений. Границей, разделяющей половое и бесполое поколение в цикле развития является процесс оплодотворения.

Мейоз– это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей).Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Бесполое размножение

Бесполое размножение, или агамогенез - форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи. Следует отличать бесполое размножение от однополого размножения (партеногенеза), который является особой формой полового размножения.

Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30–60 минут. Размножающийся бесполым путем организм способен бесконечно воспроизводить себя, пока не произойдет спонтанное изменение генетического материала – мутация. Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.

Бесполое размножение, воспроизводящее идентичные исходному организму особи, не способствует появлению организмов с новыми вариантами признаков, а тем самым ограничивает возможность приспособления видов к новым для них условиям среды. Средством преодоления этой ограниченности стал переход к половому размножению.

Размножение делением

Деление свойственно, прежде всего, одноклеточным организмам. Как правило, оно осуществляется путем простого деления клетки надвое. У некоторых простейших (например, фораминифер) происходит деление на большее число клеток. Во всех случаях образующиеся клетки полностью идентичны исходной. Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30–60 минут. Размножающийся бесполым путем организм способен бесконечно воспроизводить себя, пока не произойдет спонтанное изменение генетического материала – мутация. Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.

Размножение спорами

Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры – это покоящиеся клетки со сниженным метаболизмом, окруженные многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток. Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную (делящуюся) клетку.

Бесполое размножение с помощью одноклеточных спор свойственно и различным грибам и водорослям. Споры в этом случае образуются путем митоза (митоспоры), причем иногда (особенно у грибов) в огромных количествах; при прорастании они воспроизводят материнский организм. Некоторые грибы, например злостный вредитель растений фитофтора, образуют подвижные, снабженные жгутиками споры, называемые зооспорами или бродяжками. Проплавав в капельках влаги некоторое время, такая бродяжка «успокаивается», теряет жгутики, покрывается плотной оболочкой и затем, в благоприятных условиях, прорастает. Помимо митоспор, у многих из указанных организмов, а также у всех высших растений формируются споры и иного рода, а именно мейоспоры, образующиеся путем мейоза. Они содержат гаплоидный набор хромосом и дают начало поколению, обычно не похожему на материнское и размножающемуся половым путем. Таким образом, образование мейоспор связано с чередованием поколений – бесполого (дающего споры) и полового.

Вегетативное размножение

Другой вариант бесполого размножения осуществляется путем отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм. Примером может служить почкование у губок и кишечнополостных или размножение растений побегами, черенками, луковицами или клубнями. Такая форма бесполого размножения обычно называется вегетативным размножением. В своей основе оно аналогично процессу регенерации. Вегетативное размножение играет важную роль в практике растениеводства. Так, может случиться, что высеянное растение (например, яблоня) обладает некой удачной комбинацией признаков. У семян данного растения эта удачная комбинация почти наверняка будет нарушена, так как семена образуются в результате полового размножения, а оно связано с рекомбинацией генов. Поэтому при разведении яблонь обычно используют вегетативное размножение - отводками, черенками или прививками почек на другие деревья.

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, (Гаметы) от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием (Половая система) и заботой о потомстве. Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных - от рыб до теплокровных - наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости.

Онтогенез и его типы.

Онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). У видов, размножающихся половым путем, он начинается с оплодотворения яйцеклетки. У видов с бесполым размножением онтогенез начинается с обособления одной или группы клеток материнского организма. У прокариот и одноклеточных эукариотических организмов онтогенез представляет собой, по сути, клеточный цикл, обычно завершающийся делением или гибелью клетки.