Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем элект­рические заряды, существует силовое поле. Согласно представлениям современной физики, поле реально существует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются определенные взаимодействия между макроскопическими телами или частицами, входящими в состав вещества. В данном случае говорят об электрическом поле - поле, посредством которого взаимодействуют электрические заряды. Мы будем рассматривать элект­рические поля, которые создаются неподвижными электрическими зарядами и называ­ются электростатическими.

Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд - такой заряд, который не искажает исследу­емое поле (не вызывает перераспределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, поместить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона (78.2 Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №1 - открытая онлайн библиотека ), пропорциональна пробному заряду Q0. Поэтому отношениеF/Q0 не зависит от Q0 и характеризу­ет электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и являетсясиловой характеристикой электростатичес­кого поля.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №2 - открытая онлайн библиотека (79.1)

Как следует из формул (79.1) и (78.1 Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №3 - открытая онлайн библиотека ), напряженность поля точечного заряда в вакууме

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №4 - открытая онлайн библиотека (79.2)

Направление вектора Е совпадает с направлением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис. 118).

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №5 - открытая онлайн библиотека

Из формулы (79.1) следует, что единица напряженности электростатического поля - ньютон на кулон (Н/Кл): 1 Н/Кл - напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл= 1 В/м, где В (вольт) - единица потенциала электростатического поля

Графически электростатическое поле изображают с помощьюлиний напряженности (силовых линий) - линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис. 119). Линиям напряженности приписывается направление, совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Дляоднородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности - радиальные прямые, выходящие из заряда, если он положителен (рис. 120, а), и входящие в него, если заряд отрицателен (рис. 120, б). Вследствие большой наглядности графический способ представления электростатического поля широко применяется в электротехнике.

Электрическое поле подчиняется принципу суперпозиции (сложения), который можно сформулировать следующим образом: напряженность электрического поля, созданного в некоторой точке пространства системой зарядов, равна векторной сумме напряженностей электрических полей, созданных в этой же точке пространства каждым из зарядов в отдельности:

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №6 - открытая онлайн библиотека

Принцип суперпозиции позволяет рассчитать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элект­рического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи­тельному и равный расстоянию между ними, называется плечом диполя 1. Вектор

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №7 - открытая онлайн библиотека (80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называется электрическим моментом диполя или дипольным моментом (рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произ­вольной точке

Напряженность электрического поля. Напряженность поля уединенного точечного заряда. Принцип суперпозиции для вектора напряженности. Силовые линии - №8 - открытая онлайн библиотека

где Е+ и Е– - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.