При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида

При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №1 - открытая онлайн библиотека (7.1.1)

предполагалось, что y – случайная, а х – неслучайные (детерминированные) переменные. То есть, значения переменных х мы задаем, фиксируем, а затем наблюдаем получающиеся значения у. Данное допущение является одним из требований применения метода наименьших квадратов для оценки параметров уравнения регрессии, поскольку оно обеспечивает отсутствие корреляции регрессоров х и случайных ошибок регрессии При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №2 - открытая онлайн библиотека и позволяет получить несмещенные и состоятельные оценки.

Для описания реальных экономических систем, где статистические показатели находятся во взаимодействии и взаимосвязи, возникают сложности со спецификацией модели, поскольку многие факторные и результативные признаки взаимодействуют друг с другом. Из-за этого возникает проблема мультиколлинеарности факторов в уравнениях множественной регрессии.

Одна и та же переменная может рассматриваться как факторная, независимая, а с другой – как результативная, случайная величина.

Поэтому естественным выходом из подобных ситуация является построение не отдельных уравнений регрессии, а их систем, для оценивания которых применяются специальные методы. Случайные переменные называют эндогенными, т.е. внутренними, так как они формируют свои значения внутри модели. Признаки, считающиеся заданными, известными, неслучайными получили название экзогенных, или внешних для данной системы. Один и тот же признак может быть эндогенным в одной задаче и экзогенным – в другой.

С точки зрения математической статистики, главное отличие между ними в том, что экзогенные переменные не коррелируют с ошибками регрессии.

Далее будем обозначать экзогенные переменные х, а эндогенные – у.

В зависимости от характера взаимосвязей между эндогенными и экзогенными переменными выделяют системы рекурсивных (рекуррентных) и совместных, одновременных, взаимосвязанных уравнений.

Отличие между ними заключается в том, что в системе совместных уравнений одни и те же признаки одновременно могут выступать и в роли зависимых и в роли независимых переменных. Т.е. зависимые переменные входят в одних уравнениях в левую часть, в других – в правую часть системы:

При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №3 - открытая онлайн библиотека (7.1.5)

В эконометрике такая система уравнений называется также структурной формой модели.

Структурная форма модели содержит при эндогенных переменных коэффициенты При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №4 - открытая онлайн библиотека , экзогенных переменных – При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №5 - открытая онлайн библиотека , которые называются структурными коэффициентами модели. Все переменные в модели выражены в отклонениях от среднего уровня:

При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №6 - открытая онлайн библиотека (7.1.6)

Поэтому свободные члены в системе отсутствуют.

В общем виде модель системы рекурсивных уравнений будет иметь вид:

При использовании уравнений регрессии (линейных и нелинейных, парных и множественных) вида - №7 - открытая онлайн библиотека (7.1.8)

В системе рекурсивных уравнений хотя бы одна эндогенная переменная должна определятся только лишь набором независимых переменных. Если все эндогенные переменные расположены в левой части, а экзогенные – в левой, то такая система называется системой независимых уравнений. Для решения систем независимых и рекурсивных переменных используется метод наименьших квадратов.

Методы оценивания параметров систем одновременных уравнений :