Роль наследственности и среды в онтогенезе

БИЛЕТ

Генеалогический метод

В основе этого метода лежит составление и анализ родословных.

Как метод изучения генетики человека генеалогический метод стали применять только с началаXX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - арабскими.

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Родословные при аутосомно-доминантном наследовании. Для аутосомного типа наследования в целом характерна равная вероятность встречаемости данного признака как у мужчин, так и у женщин. Это обусловлено одинаковой двойной дозой генов, расположенных в аутосомах у всех представителей вида и получаемых от обоих родителей, и зависимостью развивающегося признака от характера взаимодействия аллельных генов. При доминировании признака в потомстве родительской пары, где хотя бы один родитель является его носителем, он проявляется с большей или меньшей вероятностью в зависимости от генетической конституции родителей .

Если анализируется признак, не влияющий на жизнеспособность организма, то носители доминантного признака могут быть как гомо-, так и гетерозиготами. В случае доминантного наследования какого-то патологического признака (заболевания) гомозиготы, как правило, нежизнеспособны, а носители этого признака - гетерозиготы.

Таким образом, при аутосомно-доминантном наследовании признак может встречаться в равной мере у мужчин и у женщин и прослеживается при достаточном по численности потомстве в каждом поколении по вертикали. Анализируя родословные, необходимо помнить о возможности неполного пенетрирования доминантного аллеля, обусловленной взаимодействием генов или факторами среды. Показатель пенетрантности может быть вычислен как отношение фактического числа носителей признака к числу ожидаемых носителей этого признака в данной семье. Необходимо также помнить, что некоторые заболевания проявляются не сразу с момента рождения ребенка. Многие болезни, наследуемые по доминантному типу, развиваются лишь в определенном возрасте. Так, хорея Гентингтона клинически проявляется к 35-40 годам, поздно проявляется и поликистоз почек. Поэтому при прогнозировании подобных заболеваний в расчет не принимаются братья и сестры, не достигшие критического возраста.

Первое описание родословной с аутосомно-доминантным типом наследования аномалии у человека было дано в 1905 г. В ней прослеживается передача в ряду поколений брахидактилии (короткопалости).

Родословные при аутосомно-рецессивном наследовании. Рецессивные признаки проявляются фенотипически лишь у гомозигот по рецессивным аллелям. Эти признаки, как правило, обнаруживаются у потомков фенотипически нормальных родителей - носителей рецессивных аллелей. Вероятность появления рецессивного потомства в этом случае равна 25%. Если один из родителей имеет рецессивный признак, то вероятность проявления его в потомстве будет зависеть от генотипа другого родителя. У рецессивных родителей все потомство унаследует соответствующий рецессивный признак .

Для родословных при аутосомно-рецессивном типе наследования характерно, что признак проявляется далеко не в каждом поколении. Чаще всего рецессивное потомство появляется у родителей с доминантным признаком, причем вероятность появления такого потомства возрастает в близкородственных браках, где оба родителя могут являться носителями одного и того же рецессивного аллеля, полученного от общего предка. Примером аутосомно-рецессивного наследования является родословная семьи с псевдогипертрофической прогрессивной миопатией, в которой часты близкородственные браки . Обращает внимание распространение заболевания в последнем поколении по горизонтали.

16)Типы и периоды онтогенеза. Общая хар-ка эмбрионального развития: предзиготный период, оплодотворение, зигота, дробление, гаструляция, гистогенез и органогенез.

Процесс Индивидуального развития любого организма носит название онтогенез. Понятие онтогенеза было введено в биологию Эрнстом Геккелем в 1866 году. По современным представлениям онтогенез (греч. ontos - существо, особь, genesis - развитие) - это полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях существования в определенных условиях внешней среды; он начинается образованием зиготы (при половом размножении) и заканчивается смертью. Для биологического вида Homo sapiens характерно прямое внутриутробное развитие.

В зависимости от среды, в которой происходит развитие организма человека, онтогенез распадается на два больших периода, отделенных друг от друга моментом рождения:

· Внутриутробный (пренатальный, или антенатальный), когда вновь зародившийся организм развивается в утробе матери; этот период длится от зарождения до рождения.

· Внеутробный (постнатальный), когда новая особь продолжает свое развитие вне организма матери; этот период длится от момента рождения до смерти.

В последнее время предложено также выделить предзиготный период, предшествующий образованию зиготы.

Предзиготный периодразвития связан с образованием гамет (гаметогенез). Образование яйцеклеток начинается у женщин еще до их рождения и завершается для каждой данной яйцеклетки только после ее оплодотворения. К моменту рождения плод женского пола в яичниках содержит около двух миллионов ооцитов первого порядка (это еще диплоидные клетки), и только 350 - 450 из них достигнут стадии ооцитов второго порядка (гаплоидные клетки), превращаясь в яйцеклетки (по одной в течение одного менструального цикла). В отличие от женщин половые клетки в семенниках (яичках) у мужчин начинают образовываться только с началом периода полового созревания. Длительность периода образования сперматозоида составляет примерно 70 суток; на один грамм веса яичка количество сперматозоидов составляет около 100 миллионов в сутки.

Оплодотворением называют процесс слияния яйцеклетки и сперматозоида, приводящий к образованию зиготы. Оплодотворение яйцеклетки происходит в начальном участке маточной трубы, куда проникают лишь около ста сперматозоидов. Способность сперматозоидов к оплодотворению в женских половых путях сохраняется на протяжении двух суток. Сперматозоид имеет в головке акросому, которая содержит фермент для растворения оболочки яйцеклетки. При сближении сперматозоида и яйцеклетки акросома разрывается, и освободившиеся ферменты растворяют оболочку женской гаметы. Сперматозоид проникает внутрь яйцеклетки, после чего она покрывается плотной оболочкой, препятствующей проникновению других мужских гамет. В результате оплодотворения восстанавливается диплоидный набор хромосом. Образовавшийся одноклеточный зародыш - зигота. В ней в течение суток происходят сложные перемещения отдельных участков цитоплазмы и ее органелл.

Внутриутробный периодразвития человека продолжается 280 суток и делится на:

· начальный период (первая неделя после оплодотворения, в течение которой происходит дробление зиготы, образование бластулы и ее имплантация в стенку матки);

· эмбриональный период (первые два месяца), когда происходит начальное развитие зародыша (эмбриона) и когда совершается основная закладка тканей и органов;

· плодный период (3 -9 месяцы), когда продолжается рост частей, образовавшихся в эмбриональной стадии и дальнейшее формирование органов и систем. С третьего месяца зародыш человека носит название плод.

БИЛЕТ

2)Родословные при рецессивном Х-сцепленном наследовании признаков. Характерной особенностью родословных при данном типе наследования является преимущественное проявление признака у гемизиготных мужчин, которые наследуют его от матерей с доминантным фенотипом, являющихся носительницами рецессивного аллеля. Как правило, признак наследуется мужчинами через поколение от деда по материнской линии к внуку. У женщин он проявляется лишь в гомозиготном состоянии, вероятность чего возрастает при близкородственных браках.Наиболее известным примером рецессивного Х-сцепленного наследования является гемофилия. Наследование гемофилии типа А представлено в родословной потомков английской королевы Виктории (рис. 6.31).Другим примером наследования по данному типу является дальтонизм - определенная форма нарушения цветоощущения.

Родословные при Y-сцепленном наследовании. Наличие Y-хромосомы только у представителей мужского пола объясняет особенности Y-сцепленного, или голандриче-ского, наследования признака, который обнаруживается лишь у мужчин и передается по мужской линии из поколения в поколение от отца к сыну.

Одним из признаков, Y-сцепленное наследование которого у человека все еще обсуждается, является гипертрихоз ушной раковины, или наличие волос на внешнем крае ушной раковины. Предполагают, что в коротком плече Y-хромосомы кроме этого гена находятся гены, определяющие мужской пол. В 1955 г. у мыши описан определяемый Y-хромосомой трансплантационный антиген, названный HY. Возможно, он является одним из факторов половой дифференцировки мужских гонад, клетки которых имеют рецепторы, связывающие этот антиген. Связанный с рецептором антиген активизирует развитие гонады по мужскому типу (см. разд. 3.6.5.2; 6.1.2). Этот антиген в процессе эволюции остался почти неизменным и встречается в организме многих видов животных, в том числе и человека. Таким образом, наследование способности к развитию гонад по мужскому типу определяется голандрическим геном, расположенным в Y-хромосоме (рис. 6.32).

Роль наследственности и среды в онтогенезе

Онтогенез протекает в конкретных условиях окружающей среды, и на любом его этапе организм наитеснейшим образом взаимосвязан со средой. Под средой понимают совокупность конкретных абиотических и биотических факторов (условий), в которых обитает данная особь (популяция, вид). Эти взаимосвязи организма и среды складываются и изменяются в процессе эволюции. Развитие каждого конкретного организма - это, по сути, формирование фенотипа (совокупности внешних и внутренних признаков), или реализация генотипа в конкретных условиях среды. Фенотип организма не только обусловлен генотипом, обеспечивающим материальную преемственность между поколениями, но и зависит от факторов внешней среды, в которой формируется и существует данный организм.В течение всего онтогенеза происходит взаимодействие между генотипом и факторами среды, которые в конечном счёте и детерминируют все биологические признаки данного организма. При этом обе эти группы факторов имеют одинаково важное значение, хотя для отдельных признаков доминирующей может выступать одна из двух групп факторов. Так, группы крови (фенотипический признак) имеют у человека исключительно генетическую природу: при любых условиях среды данный генотип проявляется одинаково и обусловливает строго определённую группу крови. С другой стороны, существуют признаки, обусловленные исключительно факторами среды. Например, количество эритроцитов в циркулирующей крови у людей с разнообразными генотипами прямо зависит от высоты местности проживания над уровнем моря: с увеличением высоты их число у всех возрастает. Тем не менее сама способность к изменению числа эритроцитов в зависимости от парциального давления кислорода в атмосферном воздухе обусловлена генетически. Однако подобные крайние случаи очень редки. В большинстве случаев различия особей определяются факторами обеих групп - наследственными и средовыми. Так, различия в росте обусловлены как генетически, так и конкретными средовыми факторами (климат, характер питания и т.п.).Значительными могут быть влияния абиотических факторов, или условий среды (атмосферное давление, излучение, температура, влажность, газовый состав, степень освещённости и др.). При снижении температуры с +20° до +15°С зародыши лягушки не могут развиваться дальше стадии ней-рулы. Прекращение доступа кислорода к эмбриону аскариды приостанавливает его развитие. Такие реакции позволяют характеризовать подобные изменения внешней среды как неблагоприятные. К последним можно отнести также действие сильных доз облучения. Если неблагоприятные изменения будут сопутствовать многим поколениям, то может произойти отбор на повышение сопротивляемости этим факторам, при условии, что такие организмы из поколения в поколение не будут погибать.В процессе эволюции выработались приспособления, уменьшающие зависимость развивающегося организма от прямого воздействия факторов среды. Эмбрион характеризуется определённой степенью автономности, которая увеличивается у более высокоорганизованных животных и достигает максимума у млекопитающих. Эмбрион млекопитающих, развиваясь в утробе материнского организма и осуществляя опосредованную взаимосвязь с внешней средой через плаценту, максимально защищен от прямого действия факторов среды. Его развитие характеризуется максимальной автономизацией.Часто характер изменений развивающегося организма, вызываемых либо наследственными, либо средовыми факторами, бывает сходным. Например, у женщин, перенесших краснуху на ранних сроках беременности, часто рождаются глухонемые дети или дети с врождённой катарактой, причём эти аномалии не отличимы от соответствующих аномалий, обусловленных генетически. Изменения фенотипа, сходные с изменениями генетической природы, но обусловленные только факторами внешней среды, получили название фенокопий.

Т ФНеблагоприятные воздействия среды в течение критических периодов развития зародыша могут вызвать отклонения в развитии органа. Такие отклонения в развитии органа, приводящие к функциональным расстройствам, называются уродствами, или пороками развития. Факторы среды, вызывающие формирование уродств, или пороков развития, названы тератогенными. Непосредственным объектом действия неблагоприятных факторов могут быть половые клетки (гаметопатии) или же сам эмбрион (эмбрионопатии). Действуя на ранних этапах эмбриогенеза, тера-тоген, как правило, вызывает гибель зародыша. Возникновение уродств наиболее вероятно в период органогенеза, когда нарушаются клеточные взаимодействия и морфогенетические движения. Первые экспериментальные уродства получил в 1822 году Ж. Сент-Илер в опытах на куриных зародышах. Он, по сути, стал основателем учения об уродствах. Наука об уродствах - тератология, возникла на стыке эмбриологии, морфологии, физиологии, генетики и медицины. Различают: а) наследственные уродства (генетической природы), которые вызваны изменениями наследственного материала; б) ненаследственные (экзогенные) уродства, которые возникают в связи с действием на зародыш тератогенных факторов среды; некоторые из ненаследственных пороков являются фенокопиями определённых генетических пороков.Известно несколько разновидностей пороков: аплазия (отсутствие органа или его части), гипоплазия (недоразвитие органа), гипотрофия (уменьшение массы органа), гипертрофия (увеличение массы органа), ге-торотопия, или эктотопия (нетипичная локализация органа или группы клеток), гетероплазия (нарушение дифференцировки тканей), стеноз (сужение канала), атрезия (отсутствие канала или отверстия), персистирова-ние (сохранение эмбриональных структур).Пороки развития, возникающие под действием тератогенных факторов, называются первичными. Вторичные пороки являются следствием первичных. Так, в результате атрезии водопровода мозга (первичного порока) возникает водянка головного мозга (вторичный порок).Анализ уродств важен для понимания закономерностей индивидуального развития. Изучение причин возникновения уродств при действии на зародыш повреждающих химических и физических факторов необходимо для разработки эффективных мер профилактики, ранней диагностики и лечения уродств.Те закономерности и механизмы онтогенеза, которые освещены в этой главе, далеки от многочисленных, реально существующих, но ещё не раскрытых наукой. Актуальной остаётся основная прикладная задача биологии развития - научиться управлять онтогенезом с целью: 1) предотвращения патологий, в том числе и наследуемых; 2) повышения продуктивности сельскохозяйственных животных.Критические периоды онтогенезаВ процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются:
1) время развития половых клеток - овогенез и сперматогенез;
2) момент слияния половых клеток - оплодотворение;
3) имплантация зародыша (4-8-е сутки эмбриогенеза);
4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития);
5) стадия усиленного роста головного мозга (15-20-я неделя);
6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода);
7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация;
8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;
9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет).
Одновременно с быстрым ростом органов половой системы активизируется эмоциональная деятельность.

БИЛЕТ

Цитогенетичвский метод

Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Его стали широко применять в исследованиях генетики человека с 1956 г., когда шведские ученые Дж. Тийо и А. Леван, предложив новую методику изучения хромосом, установили, что в кариотипе человека 46, а не 48 хромосом, как считали ранее.

Современный этап в применении цитогенетического метода связан с разработанным в 1969 г. Т. Касперсоном методом дифференциальногоокрашивания хромосом. Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или с нарушением их структуры. Кроме того, этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.

Материалом для цитогенетических исследований служат клетки человека, получаемые из разных тканей,-лимфоциты периферической крови, клетки костного мозга, фибробласты, клетки опухолей и эмбриональных тканей и др. Непременным требованием для изучения хромосом является наличие делящихся клеток. Непосредственное получение таких клеток из организма затруднено, поэтому чаще используют легкодоступный материал, каковым являются лимфоциты периферической крови.

В норме эти клетки не делятся, однако специальная обработка их культуры фитогемагглютинином возвращает их в митотический цикл. Накопление делящихся клеток в стадии метафазы, когда хромосомы максимально спирализованы и хорошо видны в микроскоп, достигается обработкой культуры колхицином или колцемидом, разрушающим веретено деления и препятствующим расхождению хроматид.

Микроскопирование мазков, приготовленных из культуры таких клеток, позволяет визуально наблюдать хромосомы. Фотографирование метафазных пластинок и последующая обработка фотографий с составлением кариограмм, в которых хромосомы выстроены парами и распределены по группам, позволяют установить общее число хромосом и обнаружить изменения их количества и структуры в отдельных парах.

18) Постнатальный онтогенез. Период новорожденности

Сразу после рождения наступает период, называемый периодом новорожденности. Основанием для этого выделения служит тот факт, что в это время имеет место вскармливание ребенка молозивом в течение 8-10 дней. Новорожденные в начальном периоде приспособления к условиям внеутробной жизни разделяются по уровню зрелости на доношенных и недоношенных. Внутриутробное развитие доношенных детей длится 39-40 нед., недоношенных - 28-38 нед. При определении зрелости учитывают не только эти сроки, но и массу (вес) тела при рождении.
Доношенными считаются новорожденные с массой тела не менее 2500 г (при длине тела не менее 45 см), а недоношенными - новорожденные, имеющие массу тела меньше 2500 г. Кроме массы и длины, учитывают и другие размеры, например обхват груди в соотношении с длиной тела и обхват головы в соотношении с обхватом груди. Считается, что обхват груди на уровне сосков должен быть больше 0,5 длины тела на 9-10 см, а обхват головы - больше обхвата груди не более чем на 1-2 см.

Грудной период

Следующий период - грудной - продолжается до года. Начало этого периода связано с переходом к питанию "зрелым" молоком. Во время грудного периода наблюдается наибольшая интенсивность роста, по сравнению со всеми остальными периодами внеутробной жизни. Длина тела увеличивается от рождения до года в 1,5 раза, а масса тела утраивается. С 6 мес. начинают прорезываться молочные зубы. В грудном возрасте ярко выражена неравномерность в росте тела. В первом полугодии грудные дети растут быстрее, чем во втором. В каждом месяце первого года жизни появляются новые показатели развития. В первый месяц ребенок начинает улыбаться в ответ на обращение к нему взрослых, в 4 мес. настойчиво пытается встать на ножки (при поддержке), в 6 мес. пытается ползать на четвереньках, в 8 - делает попытки ходить, к году ребенок обычно ходит.

Период раннего детства.Период раннего детства длится от 1 года до 4 лет. В конце второго года жизни заканчивается прорезывание зубов. После 2 лет абсолютные и относительные величины годичных приростов размеров тела быстро уменьшаются.

Период первого детства.С 4 лет начинается период первого детства, который заканчивается в 7 лет. Начиная с 6 лет появляются первые постоянные зубы: первый моляр (большой коренной зуб) и медиальный резец на нижней челюсти.
Возраст от 1 года до 7 лет называют также периодом нейтрального детства, поскольку мальчики и девочки почти не отличаются друг от друга размерами и формой тела.

Период второго детства. Период второго детства длится у мальчиков с 8 до 12 лет, у девочек - с 8 до 11 лет. В этот период выявляются половые различия в размерах и форме тела, а также начинается усиленный рост тела в длину. Темпы роста у девочек выше, чем у мальчиков, так как половое созревание у девочек начинается в среднем на два года раньше. Усиление секреции половых гормонов (особенно у девочек) обусловливает развитие вторичных половых признаков. Последовательность появления вторичных половых признаков довольно постоянна. У девочек вначале формируются молочные железы, затем появляются волосы на лобке, потом - в подмышечных впадинах. Матка и влагалище развиваются одновременно с формированием молочных желез. В гораздо меньшей степени процесс полового созревания выражен у мальчиков. Лишь к концу этого периода у них начинается ускоренный рост яичек, мошонки, а затем - полового члена.

Подростковый период. Следующий период - подростковый - называется также периодом полового созревания, или пубертатным периодом. Он продолжается у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет. В это время наблюдается дальнейшее увеличение скоростей роста - пубертатный скачок, который касается всех размеров тела. Наибольшие прибавки в длине тела у девочек имеют место между 11 и 12 годами, по массе тела - между 12 и 13 годами. У мальчиков прибавка в длине наблюдается между 13 и 14 годами, а прибавка в массе тела - между 14 и 15 годами. Особенно велика скорость роста длины тела у мальчиков, в результате чего в 13,5-14 лет они обгоняют девочек по длине тела. В связи с повышением активности гипоталамо-гипофизарной системы формируются вторичные половые признаки. У девочек продолжается развитие молочных желез, наблюдается рост волос на лобке и в подмышечных впадинах. Наиболее четким показателем полового созревания женского организма является первая менструация. В подростковый период происходит интенсивное половое созревание мальчиков. К 13 годам у них происходит изменение (мутация) голоса и появляются волосы на лобке, а в 14 лет появляются волосы в подмышечных впадинах. В 14-15 лет у мальчиков появляются первые поллюции (непроизвольные извержения спермы).
У мальчиков, по сравнению с девочками, более продолжителен пубертатный период и сильнее выражен пубертатный скачок роста.

Юношеский возраст.Юношеский возраст продолжается у юношей от 18 до 21 года, а у девушек - от 17 до 20 лет. В этот период в основном заканчиваются процесс роста и формирование организма и все основные размерные признаки тела достигают дефинитивной (окончательной) величины.
В юношеском возрасте завершается формирование половой системы, созревание репродуктивной функции. Окончательно устанавливаются овуляторные циклы у женщины, ритмичность секреции тестостерона и выработка зрелой спермы у мужчины.

Зрелый, пожилой, старческий возраст.В зрелом возрасте форма и строение тела изменяются мало. Между 30 и 50 годами длина тела остается постоянной, а потом начинает уменьшаться. В пожилом и старческом возрасте происходят постепенные инволютивные изменения организма.

Роль эндокринных желез в регуляции жизнедеятельности организма в постнатальном периоде очень велика. Важен гормон соматропин, выделяемый гипофизом с момента рождения до подросткового периода. Гормон щитовидной железы - тироксин - играет очень большую роль на протяжении всего периода роста. С подросткового возраста рост контролируется стероидными гормонами надпочечников и гонад. Из факторов среды наибольшее значение имеют питание, время года, психологические воздействия.

БИЛЕТ

4)Метод определения полового хроматинатВ качестве экспресс-метода, выявляющего изменение числа половых хромосом, используют метод определения полового хроматина в неделящихся клетках слизистой оболочки щеки. Половой хроматин, или тельце Барра, образуется в клетках женского организма одной из двух Х-хромосом. Оно выглядит как интенсивно окрашенная глыбка, расположенная у ядерной оболочки (см. рис. 3.77). При увеличении количества Х-хромосом в кариотипе организма в его клетках образуются тельца Барра в количестве на единицу меньше числа Х-хромосом. При уменьшении числа Х-хромосом (моносомия X) тельце Барра отсутствует.

В мужском кариотипе Y-хромосома может быть обнаружена по более интенсивной по сравнению с другими хромосомами люминесценции при обработке их акрихинипритом и изучении в ультрафиолетовом свете.

19)Старость представляет собой стадию индивидуального развития, по достижении которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде, эмоциональной сфере.

Старение представляет собой всеобъемлющий процесс, охватывающий все уровни структурной организации особи -от макромолекулярного до организменного.

Ряд наблюдений легли в основу достаточно распространенной точки зрения о наследуемости продолжительности жизни и, следовательно, наличии генетического контроля или даже особой генетической программы старения. Представление о величине наследуемости продолжительности жизни получают, определяя коэффициент наследуемости. Результаты оценки степени генетического контроля старения путем расчета коэффициента наследуемости долгожительства указывают лишь на отсутствие специальной генетической программы старения. При отсутствии специальных генов или целой программы, прямо определяющих развитие старческих признаков, процесс старения находится тем не менее под генетическим контролем путем изменения его скорости. Называют разные пути такого контроля. Во-первых, это плейотропное действие, свойственное многим генам. Во-вторых, со временем в генотипах соматических клеток, особенно в области регуляторных нуклеотидных последовательностей, накапливаются ошибки (мутации). Следствием этого является нарастающее с возрастом нарушение работы внутриклеточных механизмов, процессов репликации, репарации, транскрипции ДНК. В-третьих, генетические влияния на скорость старения могут быть связаны с генами предрасположенности к хроническим заболеваниям, таким, как ишемическая болезнь сердца, атеросклероз сосудов головного мозга, гипертония, наследуемым по полигенному типу.

В исследованиях зависимости скорости старения от условий жизни, проводимых на лабораторных животных, используют следующие признаки: 1) состояние белков соединительной ткани коллагена и эластина; 2) показатели сердечной деятельности и кровообращения; 3) содержание пигмента липофусцина в клетках нервной системы и сердца; 4) показатели произвольной двигательной активности; 5) способность к обучению.

Влияние социально-экономических условий на длительность жизни может быть оценено путем сравнения названного показателя для одной и той же популяции (например, население страны), но в разные исторические периоды или же путем сопоставления продолжительности жизни в двух популяциях, различающихся по жизненному уровню и сосуществующих в одно и то же историческое время.

Геронтология - это наука, изучающая биологические механизмы и процессы, обуславливающие и сопровождающие старение живых существ, а также способы замедления старения и увеличения продолжительности жизни.

Гериатрия - медицинская дисциплина, занимающаяся изучением особенностей заболеваний у лиц пожилого и старческого возраста и их лечением.

БИЛЕТ

Генеративные мутации

Изменения наследственной программы половых клеток человека приводят к рождению потомства с различными наследственно обусловленными болезнями, в зависимости от ранга мутаций - генными или хромосомными.

Хромосомные перестройки и геномные мутации приводят к выраженным отклонениям в развитии и часто являются причиной гибели организма на разных стадиях его онтогенеза, обычно в раннем эмбриогенезе. В значительной степени именно этими мутациями определяется высокий процент (15%) прерывания диагностированных беременностей.

Триплоидии плода, как правило, приводят к прерыванию беременности на ранних стадиях, однако описано очень небольшое число случаев живорождения триплоидов. Анэуплоидия по разным хромосомам встречается как в материале абортусов, так и у рожденных детей. Некоторые анэуплоидий несовместимы с жизнью. Так, трисомия по 16-й хромосоме обнаруживается только в материале абортусов. В то же время у человека известны синдромы, связанные с аномалиями числа хромосом, характеризующиеся разной степенью жизнеспособности.

Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный три-сомией по 21-й хромосоме, встречающийся с частотой 1-2 на 1000 (рис. 4.3). Примерно в 60% случаев трисомия 21 является причиной гибели плода, около 30% родившихся умирает на первом году жизни. Еще 46% не переживает Злетний рубеж, однако иногда люди с синдромом Дауна доживают до значительного возраста (рис. 4.4), хотя в целом продолжительность их жизни сокращена. Применение эффективных противомикробных препаратов позволяет несколько увеличить продолжительность жизни таких больных. Трисомия 21 может быть результатом случайного нерасхождения гомологичных хромосом в мейозе. Наряду с этим известны случаи регулярной трисомии, связанной с транслокацией 21-й хромосомы на другую -21, 22, 13, 14 или 15-ю хромосому

Среди других аутосомных трисомий известны трисомии по 13-й хромосоме - Синдром Патау а также по 18-й хромосоме - синдром Эдвардса при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития. Применение методов дифференциального окрашивания хромосом позволило открыть три новых синдрома, обусловленных трисомиями по 8, 9 и 22-й хромосомам, при которых также наблюдаются тяжелые комплексные пороки развития

Достаточно часто у человека встречаются анэуплоидии по половым хромосомам .В отличие от анэуплоидии по аутосомам дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдаются нарушения развития половых органов и гормонозависимого роста тела. Реже встречаются пороки развития других систем. Относительно благоприятные последствия увеличения числа Х-хромосом, видимо, связаны с возможностью компенсации дозы соответствующих генов благодаря естественной генетической инактивации этих хромосом, а также мозаичному характеру такой инактивации.

Среди анэуплоидных синдромов по половым хромосомам моносомия Х (ХО) (синдром Шерешевского - Тернера) встречается много реже, чем трисомия X, синдром Клайнфельтера (XXY, XXXY), а также XYY, что указывает на наличие сильного отбора против гамет, не содержащих половых хромосом, или против зигот ХО. Это предположение подтверждается достаточно часто наблюдаемой моносомией Х среди спонтанно абортированных зародышей. В связи с этим допускается, что выжившие зиготы ХО являются результатом не мейотического, а митотического нерасхождения, или утраты Х-хромосомы на ранних стадиях развития. Моносомии YO у человека не обнаружено.

Синдром моносомии Х (ХО-синдром, синдром Шерешерского - Тернера). Б - кариотип женщины с синдромом ХО:

I - выраженная трапециевидная шейная складка, широкая грудная клетка, широко расставленные, слаборазвитые соски молочных желез,

II - характерные лимфатические отеки на ногах

Синдром Клайнфельтера. А -внешний вид больного (характерен высокий рост, непропорционально длинные конечности); Б-кариотип больного (XXY)

Организмы с анэуплоидией по половым хромосомам при наличии Y-хромосомы развиваются по мужскому типу и фенотипически дают синдром Клайнфельтера. Это является еще одним свидетельством в пользу расположения фактора, определяющего мужской тип развития в Y-хромосоме.