Основные предпосылки метода наименьших квадратов

Свойства коэффициентов регрессии существенным об­разом зависят от свойств случайной составляющей. Для того что­бы регрессионный анализ, основанный на обычном методе наименьших квад­ратов, давал наилучшие из всех возможных результаты, дол­жны выполняться следующие условия, известные как условия Гаусса – Маркова.

· Первое условие. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю. Иногда случайная составляющая будет положительной, иногда отрицательной, но она не должна иметь систематичес­кого смещения ни в одном из двух возможных направлений.

Основные предпосылки метода наименьших квадратов - №1 - открытая онлайн библиотека

Фактически если уравнение регрессии включает постоянный член, то обыч­но это условие выполняется автоматичес­ки, так как роль константы состоит в определении любой систематической тенденции Основные предпосылки метода наименьших квадратов - №2 - открытая онлайн библиотека , которую не учитывают объясняющие переменные, включен­ные в уравнение регрессии.

· Второе условие состоит в том, что модели (2) возмущение Основные предпосылки метода наименьших квадратов - №3 - открытая онлайн библиотека (или зависимая переменная Основные предпосылки метода наименьших квадратов - №4 - открытая онлайн библиотека ) есть величина случайная, а объясняющая переменная Основные предпосылки метода наименьших квадратов - №5 - открытая онлайн библиотека - вели­чина неслучайная.

Если это условие выполнено, то теоретическая ковариация между независи­мой переменной и случайным членом равна нулю.

· Третье условие предполагает отсутствие систематической связи между значени­ями случайной составляющейв любых двух наблюдениях. Например, если случайная составляющая велика и положительна в одном наблюдении, это не должно обусловливать систематическую тенденцию к тому, что она будет большой и положительной в следующем наблюдении. Случайные составляющие должны быть независимы друг от друга.

В силу того, что Основные предпосылки метода наименьших квадратов - №6 - открытая онлайн библиотека , данное условие можно записать следую­щим образом:

Основные предпосылки метода наименьших квадратов - №7 - открытая онлайн библиотека Основные предпосылки метода наименьших квадратов - №8 - открытая онлайн библиотека

Возмущения Основные предпосылки метода наименьших квадратов - №9 - открытая онлайн библиотека не коррелированны (условие независимости случайных составляющих в различных наблюдениях).

Это условие означает, что отклонения регрессии (а значит, и сама зависимая переменная) не коррелируют. Условие некоррелируемости огра­ничительно, например, в случае временного ряда Основные предпосылки метода наименьших квадратов - №10 - открытая онлайн библиотека . Тог­да третье условиеозначает отсутствие автокорреляции ряда Основные предпосылки метода наименьших квадратов - №11 - открытая онлайн библиотека .

· Четвертое условие означает, что дисперсия случайной составляющей должна быть постоянна для всех наблюдений. Иногда случайная составляющая будет больше, иногда меньше, однако не должно быть априорной причины для того, чтобы она по­рождала большую ошибку в одних наблюдениях, чем в других.

Эта постоянная дисперсия обычно обозначается Основные предпосылки метода наименьших квадратов - №12 - открытая онлайн библиотека , или часто в более крат­кой форме Основные предпосылки метода наименьших квадратов - №13 - открытая онлайн библиотека , а условие записывается следующим образом:

Основные предпосылки метода наименьших квадратов - №14 - открытая онлайн библиотека

Величина Основные предпосылки метода наименьших квадратов - №12 - открытая онлайн библиотека , конечно, неизвестна. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайной составляющей.

Это условие гомоскедастичности, или равноизменчивости случайной составляющей (возмущения).

·Предположение о нормальности

Наряду с условиями Гаусса- Маркова обычно также предполагается нормаль­ность распределения случайного члена. Дело в том, что если случайный член нормально распределен, то так же будут распределены и коэффициенты регрессии.