Исследование системы m линейных уравнений с n неизвестными

Исследовать систему линейных уравнений значит установить: имеет ли данная система решение (система совместна) или решения нет (система несовместна). Если система совместна, необходимо найти все возможные решения.

Пусть дана система линейных уравнений

Исследование системы m линейных уравнений с n неизвестными - №1 - открытая онлайн библиотека (1.8)

Матрица Исследование системы m линейных уравнений с n неизвестными - №2 - открытая онлайн библиотека называется матрицей этой системы, а матрица Исследование системы m линейных уравнений с n неизвестными - №3 - открытая онлайн библиотека – расширенной матрицей системы. Набор чисел Исследование системы m линейных уравнений с n неизвестными - №4 - открытая онлайн библиотека – решение СЛУ (1.8)

Следующие две теоремы позволяют установить наличие решений системы (1.8).

Теорема Кронекера – Капелли:для того, чтобы система линейных уравнений (1.8) была совместна необходимо и достаточно, чтобы

rang A = rang A ‌ B.

Теорема: если: 1) rang A = rang A ‌ B = n, где n число неизвестных, то система имеет единственное решение; 2) rang A = rang A ‌ B = r < n, то система имеет бесчисленное множество решений; 3) rang A ≠ rang A ‌ B, то система не имеет решений (несовместна).

При единственно возможном решении систему называют определённой. При множестве решений – неопределённой. В случае неограниченного числа решений следует выразить связь между неизвестными через свободные параметры. Количество свободных параметров равно n – r.

Рассмотрим все возможные случаи, возникающие при использовании метода Гаусса. Расширенную матрицу приводят к виду, когда в нижней строке находится минимальное количество элементов, отличных от нуля. Если таких элементов два (по одному до и после разделительной прямой, как это было в матрице 1.7), то система совместна и определена. Если слева от черты стоят все нули, а справа нет нуля, то система линейных уравнений не имеет решения, то есть несовместна.

Наличие слева от черты двух элементов, отличных от нуля означает, что система имеет бесчисленное число решений, то есть система является совместной, но неопределённой. В качестве свободного параметра выбирается хn, относительно которого определяются все другие неизвестные.

Возможен случай получения нулей во всей нижней строке матрицы, тогда анализ системы проводится по предпоследней строке, которая после удаления нулевой строки становится последней.

Таким образом, по виду последней строки можно заключить:

1. (0 ... 0 0 0 | n ) – система несовместна;

2. (0 ... 0 0 а | n ) – система совместна и определена;

3. (0 ... 0 b а | n ) – система совместна, но неопределенна.

Пример:

Исследовать систему уравнений

Исследование системы m линейных уравнений с n неизвестными - №5 - открытая онлайн библиотека

Решение: проведём эквивалентные преобразования расширенной матрицы: вычтем из второй строки первую; а из третьей – удвоенную первую строку. После чего к последней строке добавим вторую:

Исследование системы m линейных уравнений с n неизвестными - №6 - открытая онлайн библиотека ~ Исследование системы m линейных уравнений с n неизвестными - №7 - открытая онлайн библиотека ~ ~ Исследование системы m линейных уравнений с n неизвестными - №8 - открытая онлайн библиотека .

Вывод: система линейных уравнений несовместна, так как rangA = 2, а rang A ‌ B = 3.

Однородные СЛУ

Системы линейных уравнений, у которых все свободные члены равны нулю (b1 = b2= …= bm = 0) образуют класс однородных систем.

Исследование системы m линейных уравнений с n неизвестными - №9 - открытая онлайн библиотека

Эти системы всегда совместны, так как имеют нулевое (тривиальное) решение x1 = x2= …= xn = 0. Наличие других решений можно установить переводом однородной системы уравнений в неоднородную систему с помощью соответствующей замены переменной.

Пример:

Найти все решения системы Исследование системы m линейных уравнений с n неизвестными - №10 - открытая онлайн библиотека

Решение: по методу Гаусса получим:

Исследование системы m линейных уравнений с n неизвестными - №11 - открытая онлайн библиотека ~ Исследование системы m линейных уравнений с n неизвестными - №12 - открытая онлайн библиотека ~ Исследование системы m линейных уравнений с n неизвестными - №13 - открытая онлайн библиотека ~

~ Исследование системы m линейных уравнений с n неизвестными - №14 - открытая онлайн библиотека .

Полученной матрице соответствует однородная СЛУ:

Исследование системы m линейных уравнений с n неизвестными - №15 - открытая онлайн библиотека

Положив Исследование системы m линейных уравнений с n неизвестными - №16 - открытая онлайн библиотека , где Исследование системы m линейных уравнений с n неизвестными - №17 - открытая онлайн библиотека , получим множество решений данной системы.

Ответ: х1 = 1,89t; х2 = –1,57t; х3 = –1,01t; х4 = t.

Задания для самостоятельной работы

1. Исследовать данные системы линейных уравнений на совместность. В случае совместности системы найти все ее решения.

1.1. Исследование системы m линейных уравнений с n неизвестными - №18 - открытая онлайн библиотека 1.2. Исследование системы m линейных уравнений с n неизвестными - №19 - открытая онлайн библиотека 1.3. Исследование системы m линейных уравнений с n неизвестными - №20 - открытая онлайн библиотека

1.4. Исследование системы m линейных уравнений с n неизвестными - №21 - открытая онлайн библиотека 1.5. Исследование системы m линейных уравнений с n неизвестными - №22 - открытая онлайн библиотека

1.6. Исследование системы m линейных уравнений с n неизвестными - №23 - открытая онлайн библиотека 1.7. Исследование системы m линейных уравнений с n неизвестными - №24 - открытая онлайн библиотека

2.Найти все решения данных однородных систем линейных уравнений.

2.1. Исследование системы m линейных уравнений с n неизвестными - №25 - открытая онлайн библиотека 2.2. Исследование системы m линейных уравнений с n неизвестными - №26 - открытая онлайн библиотека 2.3. Исследование системы m линейных уравнений с n неизвестными - №27 - открытая онлайн библиотека

Ответы

1.1.х1 = 1; х2 = –2; х3 = –1. 1.2.х1 = 1; х2 = –2; x3 = 1. 1.3.х1 = 1; х2 = –2; x3 = 1. 1.4. х1 = 2 – t, х2 = – 3 + t, x3 = t. 1.5.х1 = 6 – t; х2 = – 2 + t; x3 = t. 1.6.х1 = 5 + 10t; х2 = 10 + 16t; x3 = t. 1.7. х1 = 1; х2 = 1; x3 = 1. 2.1. х1 = 0; х2 = 0; x3 = 0. 2.2.х1 = – t, х2 = t, x3 = t. 2.3.х1 = – 3t, х2 = – 5t, x3 = t.

Вопросы для самоподготовки

1. Что называется определителем?

2. Свойства определителей.

3. Что называется минором и алгебраическим дополнение?

4. Теорема Лапласа.

5. Формулы для вычисления определителей второго и третьего порядка.

6. Правило Крамера для решения СЛУ.

7. Что называется матрицей? Размер матриц. Виды матриц.

8. Какие операции над матрицами называются линейными?

9. Правила выполнения линейных операций над матрицами.

10. Умножение матриц.

11. Свойства произведения матриц.

12. Обратная матрица.

13. Для каких матриц существует обратная матрица?

14. Правило нахождения обратной матрицы.

15. Матричная форма СЛУ. Решение СЛУ в матричной форме.

16. Исследование СЛУ.

17. Теорема Кронекера-Капелли.

18. Метод Гаусса.

19. Однородные СЛУ и их решение.

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ

2.1.Определение вектора

Физические величины делятся на скалярные, которые при выбранной системе единиц характеризуются одним числом, и векторные, которые характеризуются не только числом, но и направлением.

Скалярными величинами являются масса, температура, объём тела, время, концентрация вещества и тому подобные величины. К векторным величинам относятся, например, скорость, ускорение, сила, напряженность электрического или магнитного полей и т.д.

Геометрическое определение вектора – направленный отрезок.

Обозначаются векторы одной буквой Исследование системы m линейных уравнений с n неизвестными - №28 - открытая онлайн библиотека или – двумя Исследование системы m линейных уравнений с n неизвестными - №29 - открытая онлайн библиотека , где А – начальная точка, а В – конечная.

Длиной или модулем вектора Исследование системы m линейных уравнений с n неизвестными - №30 - открытая онлайн библиотека называется длина отрезка АВ и обозначается Исследование системы m линейных уравнений с n неизвестными - №31 - открытая онлайн библиотека или Исследование системы m линейных уравнений с n неизвестными - №32 - открытая онлайн библиотека .

Определение. Вектором называется упорядоченный набор чисел, называемых его координатами. Записывается вектор в виде матрицы-строки

Исследование системы m линейных уравнений с n неизвестными - №33 - открытая онлайн библиотека или матрицы-столбца Исследование системы m линейных уравнений с n неизвестными - №34 - открытая онлайн библиотека .

Мы будем рассматривать свободные векторы, то есть такие, которые можно перемещать параллельно самим себе.

Два вектора Исследование системы m линейных уравнений с n неизвестными - №29 - открытая онлайн библиотека и Исследование системы m линейных уравнений с n неизвестными - №36 - открытая онлайн библиотека считаются равными, если они одинаково направлены и длины отрезков АВ и СD равны. Вектор, длина которого равна нулю, называется нуль–вектором и обозначается Исследование системы m линейных уравнений с n неизвестными - №37 - открытая онлайн библиотека (или просто 0).

Вектор Исследование системы m линейных уравнений с n неизвестными - №38 - открытая онлайн библиотека , длина которого рана единице, называется единичным или ортом. Свободный вектор однозначно определяется своей длиной и направлением.

Параллельные векторы и векторы, лежащие на одной прямой называются коллинеарными и обозначаются Исследование системы m линейных уравнений с n неизвестными - №39 - открытая онлайн библиотека .

Векторы называются компланарными, если существует плоскость, которой они параллельны.