Связь ортогональных проекций точки с её прямоугольными координатами

Если в точку О поместить начало декартовой прямоугольной системы координат, то линии пересечения плоскостей проекций совпадут с соответствующими осями координат, и задание точки двумя ортогональными проекциями будет равносильно заданию её тремя прямоугольными координатами.

Так, по заданным: А1 - определяем (x,y); A2 - определяем (x,z).

И наоборот. Например: Даны координаты точки А(18, 24, 18), построить ортогональные проекции точки А(А1, А2). По заданным координатам задаём две проекции точки А (рис. 1-24). При необходимости можно построить А3.

Связь ортогональных проекций точки с её прямоугольными координатами - №1 - открытая онлайн библиотека

Рис. 1-24

Рассмотрим подробно трёхкартинный чертёж точки. Зададим на чертеже (рис. 1-25) точки с координатами: А(15, 20, 10); В(15, 20, 30); С(25, 10, 15); D(25, 30, 15); Е(35, 20, 10); F(45, 35, 0); М(55, 0, 40); N(65, 0, 0).

Связь ортогональных проекций точки с её прямоугольными координатами - №2 - открытая онлайн библиотека

Рис. 1-25

Точки А и В, у которых совпадают горизонтальные проекции, называются горизонтально конкурирующими (рис.1-26). Из двух точек на П1 видна та, что выше. Расположение точек "выше - ниже" определяют пофронтальной проекции.

Связь ортогональных проекций точки с её прямоугольными координатами - №3 - открытая онлайн библиотека

Рис. 1-26

Точки С и D, у которых совпадают фронтальные проекции, называются фронтально конкурирующими (рис. 1-27). Из двух точек на П2 видна та, что ближе к наблюдателю. Расположение точек ближе - дальше определяют по горизонтальной проекции.

Связь ортогональных проекций точки с её прямоугольными координатами - №4 - открытая онлайн библиотека

Рис. 1-27

Точки А и Е (рис. 1-28), у которых совпадают профильные проекции, называются профильно конкурирующими. Из двух точек на П3 видна та, что левее. Расположение точек левее - правее определяют по фронтальной проекции.

Связь ортогональных проекций точки с её прямоугольными координатами - №5 - открытая онлайн библиотека

Рис. 1-28

Точки F и M (рис.1-29), у которых по две проекции расположены на координатных осях, принадлежат одной из плоскостей проекций (F Î П1; М Î П2).

Точки, у которых две проекции расположены на координатных осях, а третья проекция совпадает с началом координат, принадлежат одной из осей координат (N Î x).

Связь ортогональных проекций точки с её прямоугольными координатами - №6 - открытая онлайн библиотека

Рис. 1-29

Выводы:

1. Комплексным чертежом принято называть совокупность двух или более взаимосвязанных ортогональных проекций оригинала, расположенных на одной плоскости чертежа.

2. Двухкартинный комплексный чертёж Монжа является метрически определённым чертежом, следовательно, он обратим.

3. Имея две проекции оригинала, можно построить сколько угодно адекватных проекций данного оригинала, что широко используется в технических чертежах.

Контрольные вопросы

1. Какой вид проецирования используется при построении машиностроительных чертежей?

2. Что означает понятие "обратимость чертежа"?

3. Что называется линиями связи, и как они располагаются относительно осей проекций?

4. Как найти натуральную величину отрезка общего положения?

5. Какими координатами определяется расстояние от точки до плоскостей проекций П1, П2, П3?

6. Какие точки называются конкурирующими?

Тест № 1

Связь ортогональных проекций точки с её прямоугольными координатами - №7 - открытая онлайн библиотека

1. На каком чертеже точка В расположена дальше от наблюдателя, чем точки А и С?

2. В каком случае точка А принадлежит оси ОХ?

3. На каком чертеже точка С расположена выше точек А и В и дальше от наблюдателя?

4. Укажите чертёж фронтально конкурирующих точек.

5. На каком чертеже точки А и В одинаково удалены от плоскости проекций П2?

6. В каком случае точка А принадлежит П1.

7. Укажите чертёж горизонтально конкурирующих точек.

8. На каком чертеже точки А и В одинаково удалены от плоскости проекций П1?