Ряды распределения и приемы их построения

Средние величины

Средней величиной называется обобщающий показатель, характеризующий типичный уровень варьирующего количественного признака на единицу совокупности в определенных условиях места и времени.

Объективность и типичность статистической средней обеспечивается лишь при определенных условиях. Первое условие – средняя должна вычисляться для качественно однородной совокупности. Для получения однородной совокупности необходима группировка данных, поэтому расчет средней должен сочетаться с методом группировок. Второе условие – для исчисления средних должны быть использованы массовые данные. В средней величине, исчисленной на основе данных о большом числе единиц (массовых данных), колебания в величине признака, вызванные случайными причинами, погашаются, и проявляется общее свойство (типичный размер признака) для всей совокупности.

Средняя величина всегда именованная, она имеет ту же размерность, что и признак у отдельных единиц совокупности.

В экономических исследованиях и плановых расчетах применяются две категории средних:

- степенные средние;

- структурные средние.

Ряды распределения и приемы их построения - №1 - открытая онлайн библиотека К категории степенных средних относятся: средняя арифметическая, средняя гармоническая, средняя квадратическая, средняя геометрическая. Величины, для которых исчисляется средняя, обозначаются буквой хi. Средняя обозначается через Ряды распределения и приемы их построения - №2 - открытая онлайн библиотека . Такой способ обозначения указывает на происхождение средней из конкретных величин. Черта вверху символизирует процесс осреднения индивидуальных значений. Частота– повторяемость индивидуальных значений признака – обозначается буквой f.

Формулы средних величин могут быть получены на основе степенной средней, для которой определяющей является управление:

Ряды распределения и приемы их построения - №3 - открытая онлайн библиотека , откуда Ряды распределения и приемы их построения - №4 - открытая онлайн библиотека . (5.1)

В дальнейшем при написании формул средних подстрочные значки i, n использоваться не будут, но подразумевается, что суммируются все произведения Ряды распределения и приемы их построения - №5 - открытая онлайн библиотека .

В зависимости от степени k получаются различные виды средних величин, их формулы представлены в таблице 5.1.

Как видно из таблицы 5.1, взвешенные средние учитывают, что отдельные варианты значений признака имеют различную численность, поэтому каждый вариант «взвешивают» по своей частоте, т.е. умножают на нее. Частоты f при этом называются статистическими весами или просто весами средней. Однако необходимо учитывать, что статистический вес – понятие более широкое, чем частота. В качестве веса могут применяться какие-либо другие величины (в таблице 5.1 они обозначены буквой w). Например, при расчете средней продолжительности рабочего дня по предприятию единственно правильным будет взвешивание по количеству отработанных человеко-дней. Частоты отдельных вариантов могут быть выражены не только абсолютными величинами, но и относительными – частостями.

Вопрос о выборе средней решается в каждом отдельном случае, исходя из задачи исследования, материального содержания изучаемого явления и наличия исходной информации. Он состоит из нескольких этапов:

1) устанавливается определяющий показатель, т.е. обобщающий показатель совокупности, от которого зависит величина средней;

2) определяется математическое выражение для определяющего показателя;

3) производится замена индивидуальных значений средними величинами;

4) решение уравнения средней.

Основополагающее правило при этом заключается в том, что величины, представляющие собой числитель и знаменатель средней, должны иметь определенный логический смысл.

Таблица 5.1 - Формулы различных видов степенных средних величин

Значение k Наименование средней Формула средней
простая взвешенная
-1 Гармоническая Ряды распределения и приемы их построения - №6 - открытая онлайн библиотека Ряды распределения и приемы их построения - №7 - открытая онлайн библиотека ; Ряды распределения и приемы их построения - №8 - открытая онлайн библиотека
Геометрическая Ряды распределения и приемы их построения - №9 - открытая онлайн библиотека Ряды распределения и приемы их построения - №10 - открытая онлайн библиотека Ряды распределения и приемы их построения - №11 - открытая онлайн библиотека
Арифметическая Ряды распределения и приемы их построения - №12 - открытая онлайн библиотека Ряды распределения и приемы их построения - №13 - открытая онлайн библиотека ; Ряды распределения и приемы их построения - №14 - открытая онлайн библиотека
Квадратическая Ряды распределения и приемы их построения - №15 - открытая онлайн библиотека Ряды распределения и приемы их построения - №16 - открытая онлайн библиотека

Структурные средние – мода и медиана – в отличие от степенных средних, которые в значительной степени являются абстрактной характеристикой совокупности, выступают как конкретные величины, совпадающие с вполне определенными вариантами совокупности.

Медианойназывается значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные по численности части.

Ранжированный ряд – ряд, расположенный в порядке возрастания или убывания значений признака.

Для определения медианы сначала определяют ее место в ряду, используя формулу 5.2:

Ряды распределения и приемы их построения - №17 - открытая онлайн библиотека , (5.2)

где n – число членов ряда.

Если ряд состоит из четного числа членов, то за медиану условно принимают среднюю арифметическую их двух срединных значений.

Модойназывается значение признака, которое наиболее часто встречается в совокупности (в статистическом ряду).

Ряды распределения и приемы их построения

Различия индивидуальных значений признака у единиц совокупности называются вариацией признака. Она возникает в результате того, что индивидуальные значения складываются под совместным влиянием разнообразных условий (факторов), по разному сочетающихся в каждом отдельном случае.

Изучение вариации в пределах однородной группы предполагает использование следующих приемов: построение вариационного ряда (ряда распределения), его графическое изображение, исчисление основных характеристик распределения.

Вариационный ряд – групповая таблица, построенная по количественному признаку, в сказуемом которой показывается число единиц в каждой группе. Форма построения вариационного ряда зависит от характера изменения изучаемого признака, он может быть построен в форме дискретного или интервального ряда.

По характеру вариации значений признака различают:

- признаки с прерывным изменением (дискретные);

- признаки с непрерывным изменением (непрерывные).

Признаки с прерывным изменением могут принимать лишь конечное число определенных значений (например, тарифный разряд рабочих). Признаки с непрерывным изменением могут принимать в определенных границах любые значения (например, пробег автомобиля).

Для признака, имеющего прерывное изменение и принимающего небольшое количество значений, применяется построение дискретного ряда. В первой графе ряда указываются конкретные значения каждого индивидуального значения признака, во второй графе – численность единиц с определенным значением признака.

Для признака, имеющего непрерывное изменение, строится интервальный вариационный ряд, состоящий, так же как и дискретный ряд, из двух граф (варианты и частоты). При его построении в первой графе отдельные значения признака указываются в интервалах «от - до», во второй графе – число единиц, входящих в интервал. Интервалы образуются, как правило, равные и закрытые.

Вариационный ряд, состоящий из двух граф (варианты и частоты), иногда дополняются другими графами, необходимыми для вычисления отдельных статистических показателей или для более отчетливого выражения характера вариации изучаемого признака. Достаточно часто в ряд вводится графа, в которой подсчитываются накопленные частоты (S). Накопленные частотыпоказывают, сколько единиц совокупности имеют значения признака не больше, чем данное значение, и исчисляются путем последовательного прибавления к частоте первого интервала частот последующих интервалов.

Частоты ряда (f) могут быть заменены частостями (w), которые представляют собой частоты, выраженные в относительных числах (долях или процентах) и рассчитанные путем деления частоты каждого интервала на их общую сумму, т.е.

Ряды распределения и приемы их построения - №18 - открытая онлайн библиотека ; Ряды распределения и приемы их построения - №19 - открытая онлайн библиотека и т.д. (5.3)

Если вариационный ряд дан с неравными интервалами, то для правильного представления о характере распределения необходимо произвести расчет абсолютной или относительной плотности распределения.

Абсолютная плотность распределения(p) представляет собой величину частоты, приходящейся на единицу размера интервала отдельной группы ряда: p = f / i. (5.4)

Относительная плотность распределения(p/) – частное от деления частости (w) отдельной группы на размер ее интервала: p/ = w / i . (5.5)

Следующим этапом изучения вариационного ряда является его графическое изображение.

Для наглядного представления вариационных рядов используют графические методы: полигоны распределения частот, гистограммы частот, кумулятивные кривые и т.п. Линейчатые и круговые диаграммы строятся для отображения структуры совокупности.

Полигон - ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси X откладываются значения признака, а по оси Y - частоты.

Гладкая кривая, соединяющая точки, - эмпирическая плотность распределения.

Кумулята - ломаная кривая, строящаяся на основе прямоугольной системы координат, когда по оси X откладываются значения признака, а по оси Y - накопленные частоты.

Для дискретных рядов на оси откладываются сами значения признака, а для интервальных - середины интервалов.

Дискретный вариационный ряд изображается в виде полигона распределения частот. Для изображения интервального ряда применяются полигоны распределения частот и гистограмма частот. В ряде случаев для изображения вариационных рядов используются кумулятивная кривая (кумулята) и огива.

Для анализа вариационных рядов используются три группы показателей:

- показатели центра распределения;

- показатели степени вариации;

- показатели формы распределения.