Пример. Пример.Найдем интеграл, приводящийся к себе

.

Пример.Найдем интеграл, приводящийся к себе:

.

Пример.Найдем интеграл, не принадлежащий к основным типам интегралов

II случай. Рекуррентные формулы.

.

Таким образом, или .

5. Интегрирование рациональных дробей.

Как было показано раньше ( Гл. , п. ) существует 4 типа элементарных дробей. Интегрируются они стандартным образом.

I. .

II. .

III.

.

, .

. Таким образом,

IV.

,

,

был построен в п. 4.

6. Интегрирование тригонометрических функций.

Алгоритмы вычисления таких интегралов даются в прилагаемых ниже таблицах.

 
 
   
   
       
Общий случай:  

7. Интегрирование иррациональных функций.

Алгоритмы вычисления таких интегралов даются в прилагаемых ниже таблицах.

п. 5 Конструкция определенного интеграла

Пусть функция определена на отрезке . Разобьем этот отрезок на произвольных частей точками разбиения . В каждом из полученных отрезков выберем произвольную точку . Через обозначим длину отрезка . Обозначим сумму , которую назовем интегральной суммой Римана функции на отрезке , соответствующей данному разбиению отрезка и данному выбору точек .

Геометрический смысл интегральной суммы заключается в том, что это сумма площадей прямоугольников с основаниями и высотой (при выполнении условия ).

Обозначим через длину наибольшего отрезка разбиения : .

Определение 1.Если существует конечный предел интегральной суммы при и при условии, что он не зависит от разбиения отрезка и от выбора точек , то этот предел называется определенным интегралом Римана от функции на отрезке и обозначается .

Другими словами, : . Нетрудно видеть, что мы дали определение интеграла Римана в духе определения предела по Коши.

Будет полезным дать определение в духе определения предела по Гейне.

Определение 2.Функцию , для которой существует предел , называют интегрируемой по Риману. Множество всех интегрируемых по Риману на отрезке функций обозначают .

п. 6 Суммы Дарбу и их свойства

Определение 1.Пусть функция f(x) ограничена на отрезке , и r – разбиение этого отрезка. Обозначим через , , . Тогда суммы и называют верхней и нижней суммами Дарбу функции f(x) для данного разбиения r отрезка .

Из определения ТВГ и ТНГ ( ) функции f(x) следует, что , т.е. .

Геометрический смысл сумм Дарбу

Рассмотрим неотрицательную непрерывную функцию f(x) на отрезке . - площадь “описанной” ступенчатой фигуры, - “вписанной” ступенчатой фигуры. Следует отметить, что суммы Дарбу зависят только от разбиения отрезка , в то время как интегральная сумма σ зависит еще и от выбора точек : при фиксированном разбиении отрезка суммы и - некоторые числа, а сумма σ – переменная величина, т.к. произвольны.

Свойства сумм Дарбу

1. Для любого фиксированного разбиения r и для любого точки на отрезках можно выбрать так, что сумма σ будет удовлетворять неравенству . Точки можно выбрать также и таким образом, что .

Доказательство:

Пусть r – некоторое фиксированное разбиение отрезка . По определению ТВГ для данного на отрезке можно указать такую точку , что . Умножим неравенство на и просуммируем, получим . Аналогично, . ■

2. От добавления к данному разбиению r отрезка новых точек разбиения нижняя сумма Дарбу не уменьшается, а верхняя – не увеличивается.

Доказательство:

Достаточно ограничиться добавлением к данному разбиению r еще одной точки разбиения . Предположим, что точка попала в отрезок . Обозначим через и - нижние, а через и - верхние суммы Дарбу для данного разбиения r и нового . Рассмотрим нижние суммы Дарбу. Обозначим через и ТВГ функции на отрезках и . В сумму входит слагаемое , а в сумму вместо него слагаемые . Остальные слагаемые в этих суммах одинаковы. Так как и , то

. Отсюда получим . Аналогично . ■

3. Нижняя сумма Дарбу для любого разбиения не превосходит верхней суммы Дарбу для любого другого разбиения .

Доказательство:

Пусть и , и - нижняя и верхняя суммы Дарбу соответственно для разбиений и . Рассмотрим разбиение , состоящее из точек, входящих в разбиения и . Обозначим его суммы Дарбу и . Так как разбиение может быть получено из разбиения добавлением к нему точек разбиения , то по свойству 2, учитывая , получим . Но разбиение может быть получено из добавлением точек . Поэтому . Отсюда , . ■

4. Множество верхних сумм Дарбу функции для всевозможных разбиений отрезка ограничено снизу, а множество нижних сумм Дарбу ограничено сверху, причем .

Доказательство:

Это свойство непосредственно следует из свойства 3. Действительно, множество ограничено снизу, а множество ограничено сверху. Поэтому по принципу ТВГ и ТНГ они имеют точные грани. Обозначим , . Покажем, что .

Пусть . Тогда положим . Из свойств точных граней следует, что существуют числа и ( - верхняя сумма Дарбу для разбиения , - нижняя сумма Дарбу для разбиения ) такие, что , . Отсюда получим . Но , поэтому или , что противоречит свойству 3. ■