Инамика вращательного движения

Момент Mсилы F относительно какой-нибудь оси вращения определяется формулой

M=Fl,

где l – кратчайшее расстояние от прямой, вдоль которой действует сила, до оси вращения.

Моментом инерции материальной точки относительно какой-нибудь оси вращения называется величина

J=mr2,

где m – масса материальной точки и r – ее расстояние до оси вращения.

Моментом инерции твердого тела относительно его оси вращения

Инамика вращательного движения - №1 - открытая онлайн библиотека ,

где интегрирование должно быть распределено навесь объем тела. Производя интегрирование можно получить момент инерции тела любой формы.

Момент инерции сплошного однородного цилиндра (диска) относительно оси цилиндра

Инамика вращательного движения - №2 - открытая онлайн библиотека ,

где R – радиус цилиндра и m – его масса.

Момент инерции полого цилиндра (обруча) с внутренним радиусом R1 и внешним R2 относительно оси цилиндра

Инамика вращательного движения - №3 - открытая онлайн библиотека ,

для тонкостенного полого цилиндра R1≈ R2=R и J≈mR2.

Момент инерции однородного шара радиусом R относительно оси, проходящей через его центр,

Инамика вращательного движения - №4 - открытая онлайн библиотека .

Момент инерции однородного стержня относительно оси, проходящей через его середину перпендикулярно к нему,

Инамика вращательного движения - №5 - открытая онлайн библиотека .

Если для какого-либо тела известен его момент инерции J0 относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельно первой, может быть найден по формуле Штейнера

J=J0+md2,

где m – масса тела и D – расстояние от центра масс тела до оси вращения.

Основной закон динамики вращательного движения (закон сохранения момента импульса) выражается уравнением

M·dt=dL=d(Jω),

где M – момент сил, приложенных к телу, L – момент импульса тела (J – момент инерции тела, ω – его угловая скорость). Если J=const, то

Инамика вращательного движения - №6 - открытая онлайн библиотека ,

где ε – угловое ускорение, приобретаемое телом под действием момента сил M.

Кинетическая энергия вращающегося тела

Инамика вращательного движения - №7 - открытая онлайн библиотека ,

где J –момент инерции тела и ω – его угловая скорость.

3. 1. Вывести формулу для момента инерции тонкого кольца радиусом R и массой m относительно оси симметрии.

3. 2. Определить момент инерции сплошного однородного диска радиусом R = 40 см и массой m = 1 кг относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.

3. 3. Определить момент инерции J тонкого однородного стержня длиной l = 50 см и массой m = 360 г относительно оси, перпендикулярной стержню и проходящей через: 1) конец стержня; 2) точку, отстоящую от конца стержня на 1/6 его длины.

3. 4. Шар и сплошной цилиндр, изготовленные из одного и того же материала, одинаковой массы катятся без скольжения с одинаковой скоростью. Определить, во сколько раз кинетическая энергия шара меньше кинетической энергии сплошного цилиндра.

3. 5. Полная кинетическая энергия Т диска, катящегося по горизонтальной поверхности, равна 24 Дж. Определить кинетическую энергию Т1 поступательного и Т2 вращательного движения диска.

3. 6. Полый тонкостенный цилиндр массой m = 0,5 кг, катящийся без скольжения, ударяется о стену и откатывается от нее. Скорость цилиндра до удара о стену υ1=1,4 м/с, после удара υ'1=1 м/с. Определить выделявшееся при ударе количество теплоты Q.

3. 7. Однородный стержень длиной l = 1 м и массой m = 0,5 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением ε вращается стержень, если на него действует момент сил М = 98,1 мН·м?

3. 8. К ободу однородного сплошного диска массой m = 10 кг, насажанного на ось, приложена постоянная касательная сила F = 30 H. Определить кинетическую энергию диска через время t = 4 с после начала действия силы.

3. 9. Маховое колесо, момент инерции которого J = 245 кг·м2, вращается с частотой n=20 об/с. Через время t = 1 мин после того, как на колесо перестал действовать момент сил М, оно остановилось. Найти момент сил трения Мтр и число оборотов N, которое сделало колесо до полной остановки после прекращения действия сил. Колесо считать однородным диском.

3. 10. Шар радиусом R = 10 см и массой m = 5 кг вращается вокруг оси симметрии согласно уравнению φ = А + Вt2 + Сt3 (В = 2 рад/с2, С = –0,5 рад/с3). Определить момент сил М для t = 3 с.

3. 11. Вентилятор вращается с частотой n = 600 об/мин. После выключения он начал вращаться равнозамедленно и, сделав N = 50 оборотов, остановился. Работа А сил торможения равна 31,4 Дж. Определить: момент М сил торможения; 2) момент инерции J вентилятора.

3. 12. Маховик в виде сплошного диска, момент инерции которого J=150 кг·м2, вращается с частотой n = 240 об/мин. Через время t=1 мин, как на маховик стал действовать момент сил торможения, он остановился. Определить: 1) момент М сил торможения; 2) число оборотов маховика от начала торможения до полной остановки.

3. 13. Сплошной однородный диск скатывается без скольжения по наклонной плоскости, образующей угол α с горизонтом. Определить линейное ускорение а центра диска.

3. 14. К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касательная сила F = 400 H. При вращении диска на него действует момент сил трения Мтр = 2 Н·м. Определить массу m диска, если известно, что его угловое ускорение ε постоянно и равно 16 рад/с2.

3. 15. Частота вращения no маховика, момент инерции J которого равен 120 кг·м2, составляет 240 об/мин. После прекращения действия на него вращающего момента маховик под действием сил трения в подшипниках остановился за время t = π мин. Считая трение в подшипниках постоянным, определить момент М сил трения.

3. 16. Маховик в виде сплошного диска, момент инерции которого J=1,5 кг·м2, вращаясь при торможении равнозамедленно, за время t= 1 мин уменьшил частоту своего вращения с n0 = 240 об/мин до n1 = 120 об/мин. Определить: 1) угловое ускорение ε маховика; 2) момент М силы торможения; 3) работу торможения А.

3. 17. Колесо радиусом R = 30 см и массой m = 3 кг скатывается по наклонной плоскости длиной 1 = 5 м и углом наклона α = 25°. Определить момент инерции колеса, если его скорость υ в конце движения составляла 4,6 м/с.

3. 18. С наклонной плоскости, составляющей угол α = 30° к горизонту, скатывается без скольжения шарик. Пренебрегая трением, определить время движения шарика по наклонной плоскости, если известно, что его центр масс при скатывании понизился на 30 см.

3. 19. На однородный сплошной цилиндрический вал радиусом R = 50 cм намотана легкая нить, к концу которой прикреплен груз массой m = 6,4 кг. Груз, разматывая нить, опускается с ускорением а = 2 м/с2. Определить: 1) момент инерции J вала; 2) массу М вала.

3. 20. На однородный сплошной цилиндрический вал радиусом R = 20 см, момент инерции которого J = 0,15 кг·м2, намотана легкая нить, к концу которой прикреплен груз массой m = 0,5кг. До начала вращения барабана высота h груза над полом составляла 2,3 м. Определить: 1) время опускания груза до пола; 2) силу натяжения нити; 3) кинетическую энергию груза в момент удара о пол.

3. 21. Через неподвижный блок в виде однородного сплошного цилиндра массой m = 0,2 кг перекинута невесомая нить, к концам которой прикреплены тела массами m1= 0,35 кг и m2 = 0,55 кг. Пренебрегая трением в оси блока, определить: 1) ускорение грузов; 2) отношение T2/T1 сил натяжения нити.

3. 22. Кинетическая энергия вала, вращающегося с частотой n = 5 об/с, Wк = 60 Дж. Найти момент импульса L вала.

3. 23. Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую скорость ω и линейную скорость υ будут иметь в конце падения середина и верхний конец карандаша?

3. 24. Маховик начинает вращаться из состояния покоя с постоянным угловым ускорением ε = 0,4 рад/с2. Определить кинетическую энергию маховика через время t2 = 25 с после начала движения, если через t1 = 10 с после начала движения момент импульса L1 маховика составлял 60кг·м2/с.

3. 25. Горизонтальная платформа массой m = 25 кг и радиусом R = 0,8 м вращается с частотой n1 = 18 мин-1. В центре стоит человек и держит в расставленных руках гири. Считая платформу диском, определить частоту вращения платформы, если человек, опустив руки, уменьшит свой момент инерции от J1 = 3,5 кг·м2 до J2 = 1 кг·м2.

3. 26. Человек, стоящий на скамье Жуковского, держит в руках стержень длиной l = 2,5 м и массой m = 8 кг, расположенный вертикально вдоль оси вращения скамейки. Эта система (скамья и человек) обладает моментом инерции J = 10 кг·м2 и вращается с частотой n1 = 12 мин-1. Определить частоту n2 вращения системы, если стержень повернуть в горизонтальное положение.

3. 27. Человек массой T = 60 кг, стоящий на краю горизонтальной платформы массой М = 120 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1=10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека - точечной массой, определить, с какой частотой будет тогда вращаться платформа.

3. 28. Платформа, имеющая форму сплошного однородного диска, может вращаться по инерции вокруг неподвижной вертикальной оси. На краю платформы стоит человек, масса которого в 3 раза меньше массы платформы. Определять, как и во сколько раз изменится угловая скорость вращения платформы, если человек перейдет ближе к центру на расстояние, равное половине радиуса платформы.

3. 29. Человек массой m = 60 кг, стоящий на краю горизонтальной платформы радиусом R = 1 м массой М = 120 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1 = 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека - точечной массой, определить работу, совершаемую человеком при переходе от края платформы к ее центру.

3. 30. Однородный стержень длиной l = 0,5 м совершает малые колебания в вертикальной плоскости около горизонтальной оси, проходящей через его верхний конец. Найти период колебаний Т стержня.

3. 31. Обруч диаметром D = 56,5 см висит на гвозде, вбитом в стену, и совершает малые колебания в плоскости, параллельной стене. Найти период колебаний Т обруча.