Одношаговые методы

Одношаговые методы - это методы, в которых для нахождения следующей точки на кривой y = f(x) требуется информация лишь об одном предыдущем шаге. Простейшим из одношаговых методов является метод Эйлера:

, i = 0, 1, ..., n - 1. (2)

Метод Эйлера имеет невысокую точность (порядка h).

Для достижения более высокой точности (порядка h4) используют метод Рунге-Кутта четвертого порядка:

, где   (3)
   
       

Многошаговые методы

В многошаговых методах для отыскивания следующей точки кривой у = f(x) требуется информация более чем об одной из предыдущих точек.

, i = 3, 4, ..., n - 1. (4)

Пусть найдены значения в четырех последовательных точках. При этом имеются также вычисленные ранее значения правой части уравнения (1) . Тогда схему метода Адамса можно представить в виде:

где конечные разности в точке имеют вид:

(5)