Оценка адекватности тренда и прогнозирование

Для найденного уравнения тренда необходимо провести оценку его надежности (адекватности), что осуществляется обычно с помощью критерия Фишера, сравнивая его расчетное значение Fр с теоретическим (табличным) значением FТ (Приложение 4). При этом расчетный критерий Фишера определяется по формуле (102):

Оценка адекватности тренда и прогнозирование - №1 - открытая онлайн библиотека , (102)

где k – число параметров (членов) выбранного уравнения тренда.

Для проверки правильности расчета сумм в формуле (102) можно использовать следующее равенство (103):

Оценка адекватности тренда и прогнозирование - №2 - открытая онлайн библиотека . (103)

В нашем примере про ВО равенство (103) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 31): 89410,434 = 9652,171 + 79758,263.

Сравнение расчетного и теоретического значений критерия Фишера ведется при заданном уровне значимости[32]с учетом степеней свободы: Оценка адекватности тренда и прогнозирование - №3 - открытая онлайн библиотека и Оценка адекватности тренда и прогнозирование - №4 - открытая онлайн библиотека . При условии Fр > FТ считается, что выбранная математическая модель ряда динамики адекватно отражает обнаруженный в нем тренд.

Проверим тренд на адекватность в нашем примере про ВО по формуле (102):

FР = 79758,263*5/(9652,171*1) = 41,32 > FТ, значит, модель адекватна и ее можно использовать для прогнозирования (FТ = 6,61 находим по Приложению 4 в 1-ом столбце [ Оценка адекватности тренда и прогнозирование - №5 - открытая онлайн библиотека = k – 1 = 2 – 1 = 1] и 5-й строке [ Оценка адекватности тренда и прогнозирование - №6 - открытая онлайн библиотека = n – k = 5]).

Как уже было отмечено ранее, в нашем примере про ВО России можно произвести выравнивание не только по прямой линии, но и по параболе, чего делать не будем, так как уже найденный линейный тренд адекватно описывает тенденцию[33].

При составлении прогнозов уровней социально-экономических явлений обычно оперируют не точечной, а интервальной оценкой, рассчитывая так называемые доверительные интервалы прогноза. Границы интервалов определяются по формуле (104):

Оценка адекватности тренда и прогнозирование - №7 - открытая онлайн библиотека , (104)

где Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека – точечный прогноз, рассчитанный по модели тренда; Оценка адекватности тренда и прогнозирование - №9 - открытая онлайн библиотека – коэффициент доверия по распределению Стьюдента при уровне значимости Оценка адекватности тренда и прогнозирование - №10 - открытая онлайн библиотека и числе степеней свободы Оценка адекватности тренда и прогнозирование - №11 - открытая онлайн библиотека =n–1 (Приложение 2)[34]; Оценка адекватности тренда и прогнозирование - №12 - открытая онлайн библиотека – ошибка аппроксимации, определяемая по формуле (105):

Оценка адекватности тренда и прогнозирование - №13 - открытая онлайн библиотека . (105)

Спрогнозируем ВО России на 2007 и 2008 годы с вероятностью 0,95 (значимостью 0,05), для чего найдем ошибку аппроксимации по формуле (105): Оценка адекватности тренда и прогнозирование - №14 - открытая онлайн библиотека = Оценка адекватности тренда и прогнозирование - №15 - открытая онлайн библиотека = 43,937 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: Оценка адекватности тренда и прогнозирование - №9 - открытая онлайн библиотека = 2,4469 при Оценка адекватности тренда и прогнозирование - №17 - открытая онлайн библиотека = 7 – 1= 6.

Прогноз на 2007 и 2008 годы с вероятностью 0,95 по формуле (104):

Y2007 = (257,671+53,371*4) Оценка адекватности тренда и прогнозирование - №18 - открытая онлайн библиотека 2,4469*43,937 или 363,6<Y2007<578,7 (млрд. долл.);

Y2008 = (257,671+53,371*5) Оценка адекватности тренда и прогнозирование - №19 - открытая онлайн библиотека 2,4469*43,937 или 417,0<Y2008<632,0 (млрд. долл.).

Как видно из полученных прогнозов, доверительный интервал достаточно широк (из-за достаточно большой величины ошибки аппроксимации). Более точный прогноз можно получить при выравнивании по параболе 2-го порядка[35].

Анализ сезонных колебаний

В рядах динамики, уровни которых являются месячными или квартальными показателями, наряду со случайными колебаниями часто наблюдаются сезонные колебания, под которыми понимаются периодически повторяющиеся из года в год повышение и снижение уровней в отдельные месяцы или кварталы.

Сезонным колебаниям подвержены внутригодовые уровни многих показателей. Например, расход электроэнергии в летние месяцы значительно меньше, чем в зимние; или рыночные цены на овощи в отдельные месяцы далеко не одинаковы.

При графическом изображении таких рядов сезонные колебания проявляются в повышении и снижении уровней в определенные месяцы (кварталы). В качестве иллюстрации рядов с сезонными колебаниями могут служить данные, представленные в табл. 32 и их графическое изображение (рис. 15).

Таблица 32. Динамика производства мороженого предприятием по месяцам, тонн

Номер строки Год Месяц t
январь февраль март апрель май июнь июль август сентябрь октябрь ноябрь декабрь
Итого
Оценка адекватности тренда и прогнозирование - №20 - открытая онлайн библиотека 33,333 38,000 43,667 54,333 55,333 69,000 64,667 52,000 42,333 36,000 33,333 31,333
Оценка адекватности тренда и прогнозирование - №21 - открытая онлайн библиотека 0,723 0,824 0,947 1,178 1,200 1,496 1,402 1,128 0,918 0,781 0,723 0,680

Оценка адекватности тренда и прогнозирование - №22 - открытая онлайн библиотека

Рис. 15. Динамика производства мороженого предприятием по месяцам, тонн

Вместо месячных показателей могут быть квартальные. Если колебания не случайны, то они сохраняются и в квартальных уровнях, как это показано в табл. 33 и на рис. 16, где месячные данные из табл. 32 преобразованы в квартальные.

Таблица 33. Динамика производства мороженого предприятием по кварталам, тонн

Год Кварталы Итого
Итого

Оценка адекватности тренда и прогнозирование - №23 - открытая онлайн библиотека

Рис. 16. Динамика производства мороженого предприятием по кварталам, тонн

Наблюдение за сезонными колебаниями позволяет устранить их там, где они нежелательны, а также решить ряд практических задач, например, определить потребности в сырье, рабочей силе в тех отраслях, где влияние сезонности велико.

При изучении рядов динамики, содержащих «сезонную волну», ее выделяют из общей колеблемости уровней и измеряют. Существует 2 основных метода для решения этой задачи: расчет индексов сезонности и гармонический анализ.

Индексы сезонности показывают, во сколько раз фактический уровень ряда в определенный момент или интервал времени t больше среднего уровня, либо уровня, вычисляемого по уравнению тренда ( Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека ). Способы расчета индексов сезонности зависят от наличия или отсутствия тренда. Если тренда нет или от незначителен, то для каждого месяца (квартала) индекс сезонности определяется по формуле (106):

Оценка адекватности тренда и прогнозирование - №25 - открытая онлайн библиотека , (106)

где Yt – уровень ряда динамики за месяц (квартал) t;

Оценка адекватности тренда и прогнозирование - №26 - открытая онлайн библиотека – средний уровень всего ряда динамики.

Индексы сезонности желательно рассчитывать для рядов динамики, длиной в несколько лет, тогда формула индекса сезонности примет следующий вид:

Оценка адекватности тренда и прогнозирование - №27 - открытая онлайн библиотека , (107)

где Оценка адекватности тренда и прогнозирование - №28 - открытая онлайн библиотека – средний уровень ряда динамики по одноименным месяцам t за T лет.

Например, по данным таблицы 32, представляющим ряд динамики за 3 года, индексы сезонности будем рассчитывать по формуле (107), для чего сначала рассчитаем Оценка адекватности тренда и прогнозирование - №29 - открытая онлайн библиотека (4-я строка таблицы 32), а затем, разделив полученные значение на T=3, получим средние уровни за каждый месяц Оценка адекватности тренда и прогнозирование - №30 - открытая онлайн библиотека (5-я строка таблицы 32). Средний уровень всего ряда определяем по формуле средней арифметической простой: Оценка адекватности тренда и прогнозирование - №31 - открытая онлайн библиотека . В 6-й строке таблицы 32 определены индексы сезонности для каждого месяца по формуле (107), то есть делением значений в 5-й строке на 46,111.

При наличии тренда индексы сезонности определяются определяются аналогично по формулам (106) – (107) с учетом замены Оценка адекватности тренда и прогнозирование - №26 - открытая онлайн библиотека на выравненные по уравнению тренда уровни Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека . На основе найденных индексов сезонности и тренда можно спрогнозировать (экстраполировать) ряд динамики по формуле:

Оценка адекватности тренда и прогнозирование - №34 - открытая онлайн библиотека . (108)

Особое место при анализе сезонных колебаний занимает гармонический анализ сезонных колебаний, в котором осуществляется выравнивание ряда динамики с помощью ряда Фурье, уровни которого можно выразить как функцию времени следующим уравнением:

Оценка адекватности тренда и прогнозирование - №35 - открытая онлайн библиотека . (109)

То есть сезонные колебания уровней динамического ряда можно представить в виде синусоидальных колебаний. Поскольку последние представляют собой гармонические колебания, то синусоиды, полученные при выравнивании по ряду Фурье, называют гармониками различных порядков (показатель k в этом уравнении определяет число гармоник). Обычно при выравнивании по ряду Фурье рассчитывают несколько гармоник (чаще не более 4) и затем уже определяют, с каким числом гармоник ряд Фурье наилучшим образом отражает изменения уровней ряда.

При выравнивании по ряду Фурье периодические колебания уровней динамического ряда представлены в виде суммы нескольких синусоид (гармоник), наложенных друг на друга.

Так, при k=1 ряд Фурье будет иметь вид

Оценка адекватности тренда и прогнозирование - №36 - открытая онлайн библиотека , (110)

а при k=2, соответственно,

Оценка адекватности тренда и прогнозирование - №37 - открытая онлайн библиотека (111)

и так далее.

Параметры уравнения теоретических уровней, определяемого рядом Фурье, находят, как и в других случаях, методом наименьших квадратов. Приведем без вывода формулы[36], используемые для исчисления параметров ряда Фурье:

Оценка адекватности тренда и прогнозирование - №38 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №39 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №40 - открытая онлайн библиотека . (112)

Последовательные значения t обычно определяются от 0 с увеличением (приростом), равным Оценка адекватности тренда и прогнозирование - №41 - открытая онлайн библиотека , где n – число уровней эмпирического ряда.

Например, при n=10 временнЫе точки t можно записать следующим образом:

Оценка адекватности тренда и прогнозирование - №42 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №43 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №44 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №45 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №46 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №47 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №48 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №49 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №50 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №51 - открытая онлайн библиотека ,

или (после сокращения): Оценка адекватности тренда и прогнозирование - №42 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №53 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №54 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №55 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №56 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №57 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №58 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №59 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №60 - открытая онлайн библиотека ; Оценка адекватности тренда и прогнозирование - №61 - открытая онлайн библиотека .

При n=12 значения t приведены в первой строке таблицы 34, а во второй и третьей строках определены значения sinkt и coskt для первой гармоники.

Таблица 34. Значения sinkt и coskt для первой гармоники 12-ти уровнего ряда динамики

t p/6 p/3 p/2 2p/3 5p/6 p 7p/6 4p/3 3p/2 5p/3 11p/6
cost Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека –1 Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека
sint Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека –1 Оценка адекватности тренда и прогнозирование - №62 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №63 - открытая онлайн библиотека

В таблице 35 приведены исходные данные (графы 1 и 2) и расчет показателей, необходимых для получения уравнений первой гармоники (k=1) по формуле (112).

Таблица 35. Вспомогательные расчеты параметров ряда Фурье

Год   Месяц (t) Итого
январь (0) февраль (p/6) март (p/3) апрель (p/2) май (2p/3) июнь (5p/6) июль (p) август (7p/6) сентябрь (4p/3) октябрь (3p/2) ноябрь (5p/3) декабрь (11p/6)
y  
ycost 30,31 22,5 -29 -55,4 -69 -45 -21 -0 16,5 26,85
ysint 17,5 38,97 50,23 -26 -36,4 -35 -28,6 -15,5
Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека 31,71 37,84 46,18 54,51 60,58 62,78 60,51 54,39 46,04 37,72 31,64 29,44
y  
ycost 34,64 -23 -60,6 -60 -41,6 -23 -0 30,31
ysint 38,11 39,84 -24 -39,8 -38 -31,2 -17,5
Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека 31,71 37,84 46,18 54,51 60,58 62,78 60,51 54,39 46,04 37,72 31,64 29,44
y
ycost 33,77 -31 -63,2 -65 -48,5 -19,5 -0 15,5 24,25 -259,234
ysint 19,5 36,37 53,69 36,5 -28 -33,8 -35 -26,8 -14 151,122
Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека 31,71 37,84 46,18 54,51 60,58 62,78 60,51 54,39 46,04 37,72 31,64 29,44

Искомое уравнение первой гармоники имеет вид: Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека = 46,111–14,402cost + 8,396sint, подстановкой в которое значений t в последней строке табл.35 получены теоретические значения объема производства мороженого Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека по месяцам, а на рис.17 приведено графическое изображение, из которого видно, что различия эмпирических и теоретических уровней незначительны.

Оценка адекватности тренда и прогнозирование - №83 - открытая онлайн библиотека

Рис. 17. Динамика производства мороженого предприятием, тонн

Аналогично рассчитываются параметры уравнения с применением второй, третьей и т.д. гармоник[37], а затем выбирается наиболее адекватное уравнение, то есть с минимальной ошибкой аппроксимации.

На основе подобранного уравнения по ряду Фурье можно прогнозировать (экстраполировать) развитие уровней ряда в будущем по формуле (104). Например, определим доверительные интервалы производства мороженого на январь 2007 года с вероятностью 0,95, для чего найдем ошибку аппроксимации по формуле (105): Оценка адекватности тренда и прогнозирование - №14 - открытая онлайн библиотека = Оценка адекватности тренда и прогнозирование - №85 - открытая онлайн библиотека = 4,727 и определим коэффициент доверия по нормальному распределению (так как число уровней n>30) по Приложению 1: t = 1,96. Тогда прогноз на январь 2007 года с вероятностью 0,95 по формуле (104): Yянв07 = 31,71 Оценка адекватности тренда и прогнозирование - №18 - открытая онлайн библиотека 1,99*4,727 или 22,44<Y2007<40,974 (т).

Методические указания

По данным ФСГС сальдо внешней торговли (СВТ) России за период 2000-2006 гг. характеризуется рядом динамики, представленным в табл. 36.

Таблица 36. Сальдо внешней торговли (СВТ) России за период 2000-2006 гг.

Год
Млрд. долл. США 60,1 48,1 46,3 59,9 85,8 118,3 140,7

Проанализируем данный ряд динамики: выявим тенденцию и сделаем прогноз на 2007 и 2008 годы с вероятностью 0,95.

Для большей наглядности представим данные табл. 36 на графике – рис. 18.

Оценка адекватности тренда и прогнозирование - №87 - открытая онлайн библиотека

Рис. 18. Сальдо внешней торговли (СВТ) России за период 2000-2006 гг.

Данные табл. 36 и рис. 18 наглядно иллюстрируют постепенное уменьшение и последующий рост СВТ России за период 2000-2006 гг.. Очевидно, что такую динамику не следует описывать линейной функцией тренда. Попробуем описать эту динамику с помощью тренда по параболе 2-го порядка по формуле (92). Параметры параболы (a0, a1, a2) определим методом МНК, для чего в формуле (99) вместо Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека записываем выражение параболы Оценка адекватности тренда и прогнозирование - №89 - открытая онлайн библиотека . Тогда Оценка адекватности тренда и прогнозирование - №90 - открытая онлайн библиотека . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении a0, a1, a2 функция трех переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по a0, a1, a2 и приравнять их к нулю и после элементарных преобразований решить систему трех уравнений с тремя неизвестными.

В соответствии с вышеизложенным найдем частные производные:

Оценка адекватности тренда и прогнозирование - №91 - открытая онлайн библиотека

Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:

Оценка адекватности тренда и прогнозирование - №92 - открытая онлайн библиотека (113)

Упростим систему (113), введя условную нумерацию t от середины ряда. Тогда ∑t = 0 и ∑t3 = 0, а система (113) упростится до следующего вида:

Оценка адекватности тренда и прогнозирование - №93 - открытая онлайн библиотека (114)

Решая систему (114) [38], находим параметры a0, a1, a2:

Оценка адекватности тренда и прогнозирование - №94 - открытая онлайн библиотека (115) Оценка адекватности тренда и прогнозирование - №95 - открытая онлайн библиотека (116) Оценка адекватности тренда и прогнозирование - №96 - открытая онлайн библиотека (117)

Определим по формулам (115) – (117) параметры уравнения параболы для нашего примера про СВТ России, для чего исходные данные и все расчеты необходимых сумм представим в табл. 37.

Таблица 37. Вспомогательные расчеты для параболического тренда

Год y t t2 t4 yt yt2 Оценка адекватности тренда и прогнозирование - №97 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №98 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №99 - открытая онлайн библиотека Оценка адекватности тренда и прогнозирование - №100 - открытая онлайн библиотека
60,1 -3 -180,3 540,9 56,614 12,150 541,5727 391,4745
48,1 -2 -96,2 192,4 49,764 2,770 907,3177 1010,332
46,3 -1 -46,3 46,3 51,679 28,929 795,6187
59,9 0,0 0,0 62,357 6,038 307,2558 399,4288
85,8 85,8 85,8 81,800 16,000 3,66449 34,97878
118,3 236,6 473,2 110,007 68,771 907,2919 1475,657
140,7 422,1 1266,3 146,979 39,420 4501,509 3698,377
Итого 559,2 421,7 2604,9 559,200 174,079 7964,23 8138,249

Из табл. 37 получаем по формулам (115) – (117): a0 = 62,357, a1 = 15,061 и a2 = 4,382. Отсюда искомое уравнение тренда Оценка адекватности тренда и прогнозирование - №8 - открытая онлайн библиотека =62,357+15,061t+4,382t2. В 8-м столбце табл. 37 приведены теоретические (трендовые) уровни, рассчитанные по этому уравнению, а в итоге 9-го столбца – остатки по формуле (98). Для иллюстрации построим график эмпирических и трендовых уровней – рис. 19.

Оценка адекватности тренда и прогнозирование - №102 - открытая онлайн библиотека

Рис. 19. Эмпирические и трендовые уровни СВТ России

Анализируя рис. 19, то есть сравнивая эмпирические и теоретические уровни, отмечаем, что они почти полностью совпадают, значит парабола 2-го порядка – вполне адекватная функция для отражения основной тенденции (тренда) СВТ России за 2000-2006 годы.

Равенство (103) соблюдается (необходимые суммы рассчитаны в трех последних столбцах табл. 37): 8138,249 = 174,079 + 7964,23. Теперь проверим тренд на адекватность по формуле (102): FР = 7964,23*4/(174,079*2) = 91,5 > FТ, значит модель адекватна и ее можно использовать для прогнозирования (FТ = 6,94 находим по Приложению 4 в 2-ом столбце [ Оценка адекватности тренда и прогнозирование - №5 - открытая онлайн библиотека = k – 1 = 3 – 1 = 2] и 4-й строке [ Оценка адекватности тренда и прогнозирование - №6 - открытая онлайн библиотека = n – k = 4]).

Спрогнозируем СВТ России на 2007 и 2008 годы с вероятностью 0,95, для чего найдем ошибку аппроксимации по формуле (105): Оценка адекватности тренда и прогнозирование - №14 - открытая онлайн библиотека = Оценка адекватности тренда и прогнозирование - №106 - открытая онлайн библиотека = 6,597 и найдем коэффициент доверия по распределению Стьюдента по Приложению 2: Оценка адекватности тренда и прогнозирование - №9 - открытая онлайн библиотека = 2,4469 при Оценка адекватности тренда и прогнозирование - №17 - открытая онлайн библиотека = 7 – 1= 6.

Прогноз СВТ России на 2007 и 2008 годы с вероятностью 0,95 по формуле (104):

Y2007 = (62,357+15,061*4+4,382*42) Оценка адекватности тренда и прогнозирование - №18 - открытая онлайн библиотека 2,4469*6,597 или 176,6<Y2007<208,9 (млрд. долл.);

Y2008 = (62,357+15,061*5+4,382*52) Оценка адекватности тренда и прогнозирование - №18 - открытая онлайн библиотека 2,4469*6,597 или 231,1<Y2007<263,4 (млрд. долл.).

Как видно из полученных прогнозов, доверительный интервал достаточно узок, значит получен достаточно точный прогноз СВТ России на 2006 и 2007 годы. Его надежная оценка имеет принципиальное значение для макроэкономического анализа и прогнозирования, поскольку его величина влияет на общую картину платежного баланса. Так, недооценка положительного сальдо означает недооценку отрицательного сальдо потоков капитала, и наоборот. В то же время потоки капитала увязаны с динамикой внутренних сбережений, что имеет принципиально важное значение для анализа инвестиционного потенциала и прогнозирования инвестиционной активности.


6.8. Контрольные задания

Проанализировать ряд динамики, приведенный в таблице 38 (по данным ФСГС), сделать прогноз на 2007 год.

Таблица 38. Варианты выполнения контрольного задания

Год Вариант
Число заключенных браков, тыс. Число разводов, тыс. Среднедушевые денежные доходы населения (в месяц), руб. Численность студентов, тыс.чел (на начало учеб.года) Численность профессорско-преподавательского персонала в ВУЗах, тыс.чел. (на начало учеб.года) Численность лиц, впервые признанных инвалидами, тыс. чел. Численность осужденных за преступления, , тыс. чел. Численность населения, тыс.чел. (на начало года) Число кредитных организаций, зарегистрированных Банком России (на конец года) Индекс потребительских цен, % (на конец года)
897,3 627,7 307,4 120,2
1001,6 763,5 319,6 118,6
1019,8 853,6 339,6 115,1
1091,8 798,8 354,1 112,0
979,7 635,8 364,3 111,7
1066,4 604,9 387,3 110,9
1113,7 640,9 409,0 109,0