Простейшие квантовые логические элементы

Любые квантовые вычисления сводятся к унитарным преобразованиям системы кубитов. В силу линейности, преобразование полностью определяется действием на соответствующие базисные векторы.

Рассмотрим вначале некоторые полезные преобразования квантового состояния отдельных кубитов. Ниже приведены такие преобразования и соответствующие им матрицы.

Мы везде используем стандартный (канонический) базис:

Простейшие квантовые логические элементы - №1 - открытая онлайн библиотека

Тождественное преобразование задается единичной двумерной матрицей

Простейшие квантовые логические элементы - №2 - открытая онлайн библиотека Простейшие квантовые логические элементы - №3 - открытая онлайн библиотека

Матрицы Паули задают следующие преобразования:

Простейшие квантовые логические элементы - №4 - открытая онлайн библиотека Простейшие квантовые логические элементы - №5 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №6 - открытая онлайн библиотека Простейшие квантовые логические элементы - №7 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №8 - открытая онлайн библиотека Простейшие квантовые логические элементы - №9 - открытая онлайн библиотека

Заметим, что матрицы Паули одновременно являются эрмитовыми и унитарными, поэтому унитарны и все указанные выше преобразования.

Элемент Паули Простейшие квантовые логические элементы - №10 - открытая онлайн библиотека есть оператор отрицания (negation), он осуществляет обмен состояниями, т.е. преобразует ноль в единицу и наоборот. Элемент Простейшие квантовые логические элементы - №11 - открытая онлайн библиотека задает оператор фазового сдвига (phase shift). Преобразование Простейшие квантовые логические элементы - №12 - открытая онлайн библиотека определяется произведением указанных операторов, поскольку Простейшие квантовые логические элементы - №13 - открытая онлайн библиотека .

Рассмотрим теперь важнейший для квантовых вычислений логический элемент- так называемое управляемое – НЕ (Controlled-Not) преобразование. Преобразование CNOT действует не на один, а одновременно на два кубита следующим образом: CNOT изменяет состояние второго (управляемого) кубита, если первый (управляющий) находится в состоянии Простейшие квантовые логические элементы - №14 - открытая онлайн библиотека , т.е.

Простейшие квантовые логические элементы - №15 - открытая онлайн библиотека Простейшие квантовые логические элементы - №16 - открытая онлайн библиотека

Оператор CNOT также унитарен и эрмитов одновременно. Рассматриваемое преобразование является принципиально новым по сравнению с однокубитовыми преобразованиями, т.к. матрица CNOT не может быть разложена в тензорное произведение двух однокубитовых матриц.

Удобно иметь графическое представление преобразований квантового состояния, особенно когда эти преобразования связаны с взаимодействием нескольких кубитов. CNOT- элемент обычно изображается на квантовых логических схемах в виде следующей картинки

Простейшие квантовые логические элементы - №17 - открытая онлайн библиотека

Рис. 4.1 Графическое изображение двухкубитового элемента CNOT

Здесь значок Простейшие квантовые логические элементы - №18 - открытая онлайн библиотека соответствует управляющему кубиту, а значок Простейшие квантовые логические элементы - №19 - открытая онлайн библиотека - управляемому кубиту.

Аналогично можно определить элемент Control-Control-Not (CCNOT), который соответствует преобразованию, меняющему третий бит, когда оба первые есть Простейшие квантовые логические элементы - №20 - открытая онлайн библиотека (см. рисунок). Это так называемый элемент Тоффоли.

Простейшие квантовые логические элементы - №21 - открытая онлайн библиотека

Рис. 4.2 Графическое изображение элемента Тоффоли

Действие элемента Тоффоли на базисные состояния и соответствующая унитарная матрица задаются следующим образом.

Простейшие квантовые логические элементы - №22 - открытая онлайн библиотека Простейшие квантовые логические элементы - №23 - открытая онлайн библиотека

Однокубитовые преобразования изображаются графически, например, так:

Простейшие квантовые логические элементы - №24 - открытая онлайн библиотека Простейшие квантовые логические элементы - №25 - открытая онлайн библиотека

Рис. 4.3 Примеры графических изображений однокубитовых квантовых элементов.

Оказывается, что любое унитарное преобразование- вычисление в системе кубитов можно выполнить с помощью так называемых универсальных наборов квантовых логических элементов [13,14]. Например, произвольное унитарное вращение состояния отдельного кубита и двухкубитовая операция CNOT могут рассматриваться в качестве такого универсального набора.

4.6. Преобразование Уолша-Адамара (Walsh-Hadamar Transformation)

В квантовой информатике очень широко используется следующее однокубитовое преобразование – так называемое преобразование Адамара. Оно определяется как:

Простейшие квантовые логические элементы - №26 - открытая онлайн библиотека

Задача 4.9 Покажите, что

Простейшие квантовые логические элементы - №27 - открытая онлайн библиотека .

Докажите следующие тождества:

Простейшие квантовые логические элементы - №28 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №29 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №30 - открытая онлайн библиотека

Преобразование, которое обеспечивает приложение Простейшие квантовые логические элементы - №31 - открытая онлайн библиотека к каждому из Простейшие квантовые логические элементы - №32 - открытая онлайн библиотека кубитов квантового регистра, называется преобразованием Уолша- Адамара:

Простейшие квантовые логические элементы - №33 - открытая онлайн библиотека

Задача 4.10 Докажите свойство преобразования Уолша- Адамара, которое дается формулой:

Простейшие квантовые логические элементы - №34 - открытая онлайн библиотека

Результат этой задачи часто используется при разработке квантовых алгоритмов (см. главу 5).

4.7. Теорема о невозможности клонирования неизвестного квантового состояния

Свойство линейности унитарных квантовых преобразований приводит к невозможности копирования (клонирования) информации в квантовом компьютере. Рассматриваемая теорема является одним из краеугольных камней квантовой информатики.

Доказательство проведем от противного. Предположим, что Простейшие квантовые логические элементы - №35 - открытая онлайн библиотека - унитарное преобразование, осуществляющее клонирование. Такое преобразование действовало бы по правилу Простейшие квантовые логические элементы - №36 - открытая онлайн библиотека для любого квантового состояния Простейшие квантовые логические элементы - №37 - открытая онлайн библиотека . Здесь запись Простейшие квантовые логические элементы - №37 - открытая онлайн библиотека и Простейшие квантовые логические элементы - №39 - открытая онлайн библиотека может означать не только однокубитовые, но и многокубитовые состояния.

Пусть Простейшие квантовые логические элементы - №37 - открытая онлайн библиотека и Простейшие квантовые логические элементы - №41 - открытая онлайн библиотека - два ортогональных квантовых состояния. Если Простейшие квантовые логические элементы - №35 - открытая онлайн библиотека - оператор клонирования, то Простейшие квантовые логические элементы - №36 - открытая онлайн библиотека , Простейшие квантовые логические элементы - №44 - открытая онлайн библиотека . Рассмотрим теперь состояние, являющееся суперпозицией исходных состояний Простейшие квантовые логические элементы - №45 - открытая онлайн библиотека .

Тогда, в силу линейности унитарного преобразования

Простейшие квантовые логические элементы - №46 - открытая онлайн библиотека (4.5)

Кроме того, по предположению, Простейшие квантовые логические элементы - №35 - открытая онлайн библиотека есть оператор клонирования, который должен действовать в том числе и на состояния Простейшие квантовые логические элементы - №48 - открытая онлайн библиотека . Поэтому:

Простейшие квантовые логические элементы - №49 - открытая онлайн библиотека (4.6)

Состояние, задаваемое формулой (4.6), очевидно, не совпадает с состоянием, задаваемым формулой (4.5). Получено противоречие, что и доказывает теорему.

Важно понимать какое состояние возможно реализовать, а какое нет. Можно приготовить квантовое состояние, которое известно нам заранее. Принцип невозможности клонирования говорит о невозможности клонировать неизвестное состояние.

Заметим также, что можно создавать запутанное состояние Простейшие квантовые логические элементы - №50 - открытая онлайн библиотека из неизвестного состояния Простейшие квантовые логические элементы - №51 - открытая онлайн библиотека . Пример реализации такого рода запутанного состояния дается квантовой схемой, изображенной на рисунке.

Простейшие квантовые логические элементы - №52 - открытая онлайн библиотека

Рис. 4.4 Квантовая схема генерации запутанного состояния

Рассматриваемое двухкубитовое состояние не является, однако, реализацией схемы клонирования однокубитового состояния Простейшие квантовые логические элементы - №51 - открытая онлайн библиотека . В силу запутанности, кубиты в состоянии Простейшие квантовые логические элементы - №54 - открытая онлайн библиотека оказываются связанными друг с другом: если один оказался при измерении, например, в состоянии Простейшие квантовые логические элементы - №55 - открытая онлайн библиотека , то и второй окажется в том же состоянии.

Задача 4.11Обобщите представленную выше на рисунке квантовую схему, т.е. придумайте схему, позволяющую создавать запутанное состояние Простейшие квантовые логические элементы - №50 - открытая онлайн библиотека из неизвестного состояния Простейшие квантовые логические элементы - №51 - открытая онлайн библиотека для случая трех и более кубитов.

Настоящим клоном было бы состояние Простейшие квантовые логические элементы - №32 - открытая онлайн библиотека частиц вида Простейшие квантовые логические элементы - №59 - открытая онлайн библиотека , созданное из неизвестного состояния Простейшие квантовые логические элементы - №51 - открытая онлайн библиотека . Это, однако, невозможно в силу доказанной выше теоремы.

Теорема о невозможности клонирования неизвестного квантового состояния символизирует принципиально важную роль статистических методов в квантовой информатике. Действительно, если бы рассматриваемое здесь клонирование было возможно, то, имея в распоряжении только одного представителя, мы могли бы создать сколь угодно много его копий. Проведя измерения над этими копиями, мы смогли бы сколь угодно точно восстановить квантовое состояние и любые его характеристики. Другими словами, нам не нужен был бы статистический ансамбль для проведения взаимно- дополнительных измерений, поскольку такой ансамбль всегда можно было бы воссоздать, имея под рукой всего одного представителя. Это противоречило бы таким принципам статистики, как неравенство Рао- Крамера. В действительности, уже простейшее однокубитовое состояние Простейшие квантовые логические элементы - №51 - открытая онлайн библиотека содержит в себе бесконечное (континуальное) количество информации в том смысле, что описывается комплексными бесконечно- значными числами (такими, как Простейшие квантовые логические элементы - №62 - открытая онлайн библиотека и Простейшие квантовые логические элементы - №63 - открытая онлайн библиотека ). Измерение отдельного представителя приводит к редукции его квантового состояния и соответствующей потере информации о комплексных амплитудах. Однако, одновременно с этим исследователь получает некоторое элементарное количество информации (в каком из возможных базисных состояний обнаруживается квантовая система). Для точного восстановления квантового состояния потребуется бесконечное число представителей. В реальных задачах всегда имеется конечный объем экспериментальных данных и, соответственно, возможна только приближенная оценка квантового состояния. Точность восстановления квантового состояния оказывается тем выше, чем больше число представителей статистического ансамбля подвергается измерениям (и разрушению исходных квантовых состояний). Подробно задача статистического восстановления квантовых состояний рассмотрена в работах [30, 43, 44, 51, 52].

Состояния Белла

Состояниями Белла называют следующие четыре двухкубитовые состояния.

Простейшие квантовые логические элементы - №64 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №65 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №66 - открытая онлайн библиотека

Простейшие квантовые логические элементы - №67 - открытая онлайн библиотека

Задача 4.12 Покажите, что все состояния Белла являются запутанными

Указанные состояния могут быть созданы с помощью квантовой схемы, изображенной на рисунке.

Простейшие квантовые логические элементы - №68 - открытая онлайн библиотека

Рис. 4.5 Квантовая схема для генерации состояний Белла