Понятие средней величины. Виды средних и их соотношение

Средняя величина – обобщающая количественная характеристика однородной совокупности явлений по определенному признаку. Характеризует величину изучаемого признака, приходящуюся на единицу совокупности.

Средняя гармоническая

Рассчитывается, когда изучаемые показатели связаны между собой как x и1/x (показатели на единицу времени, сырья и т.д.).

Средняя гармоническая простая: Понятие средней величины. Виды средних и их соотношение - №1 - открытая онлайн библиотека .

Пример 6.4. Требуется вычислить среднюю производительность труда бригады из 3-х человек, если первому рабочему требуется для изготовления одной детали 1/4 часа, второму - 1/3 часа, третьему - 1/2 часа.

Понятие средней величины. Виды средних и их соотношение - №2 - открытая онлайн библиотека часа.

Средняя гармоническая взвешенная: Понятие средней величины. Виды средних и их соотношение - №3 - открытая онлайн библиотека .

Средняя геометрическая

Применяется, если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин.

Понятие средней величины. Виды средних и их соотношение - №4 - открытая онлайн библиотека .

Наиболее широкое применение этот вид средней получил в анализе динамики для определения среднего темпа роста.

Пример 6.5. В результате инфляции за первый год цена товара возросла в 2 раза к предыдущему году, а за 2-й год еще в 3 раза к уровню предыдущего года. Т.е. за 2 года цена выросла в 6 раз. Какой средний темп роста цены за год?

Если считать по средней арифметической, то Понятие средней величины. Виды средних и их соотношение - №5 - открытая онлайн библиотека раза, тогда за два года выросла бы в 2,5 · 2,5 = 6,25 раза, а не в 6 раз.

Средняя геометрическая дает правильный ответ: Понятие средней величины. Виды средних и их соотношение - №6 - открытая онлайн библиотека раза.

Средняя квадратическая

Применяется, если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин.

Средняя квадратическая простая:

Понятие средней величины. Виды средних и их соотношение - №7 - открытая онлайн библиотека .

Пример 6.6. Имеется 3 участка земельной площади со сторонами квадрата: x1 = 100 м; x2 = 200 м; x3 = 300 м. Чему равна средняя площадь участков?

Общая площадь участков равна (100)2 + (200)2 + (300)2 = 140000 м2.

Если считать по средней арифметической, то Понятие средней величины. Виды средних и их соотношение - №8 - открытая онлайн библиотека м2, тогда общая площадь равна 3 · (200)2 = 120000 м2, что неверно.

Средняя квадратическая дает правильный ответ:

Понятие средней величины. Виды средних и их соотношение - №9 - открытая онлайн библиотека м2.

Средняя квадратическая взвешенная:

Понятие средней величины. Виды средних и их соотношение - №10 - открытая онлайн библиотека .

Средняя степенная

Обобщает все виды средних

Понятие средней величины. Виды средних и их соотношение - №11 - открытая онлайн библиотека .

Если k = -1, то это средняя гармоническая,

k = 0 – средняя геометрическая (после преобразований),

k = 1 – средняя арифметическая,

k = 2 – средняя квадратическая,

k = 3 – средняя кубическая.

Имеется следующее соотношение между формами средних величин:

Понятие средней величины. Виды средних и их соотношение - №12 - открытая онлайн библиотека

или

Понятие средней величины. Виды средних и их соотношение - №13 - открытая онлайн библиотека .

Пользуясь этим правилом статистика может управлять средними.

Пример 6.7. Студент на экзамене получил за 1-й вопрос оценку 2, за 2-ой вопрос – 5.

Понятие средней величины. Виды средних и их соотношение - №14 - открытая онлайн библиотека балла.

Понятие средней величины. Виды средних и их соотношение - №15 - открытая онлайн библиотека балла.

Понятие средней величины. Виды средних и их соотношение - №16 - открытая онлайн библиотека балла.

Исходя из полученных средних можно как «завалить» студента, так и «вытянуть».

Понятие средней величины. Структурные характеристики.

Средняя величина – обобщающая количественная характеристика однородной совокупности явлений по определенному признаку. Характеризует величину изучаемого признака, приходящуюся на единицу совокупности.

Структурные характеристики

Если величина средней зависит от всех значений признака, встречаемых в данном распределении, то значение средней определяется структурой распределения, местом распределения.

Медиана – значение признака, приходящееся на середину ранжированной совокупности. Медиана делит совокупность на две равные части.

Пример. Вес 7 телят: 75, 80, 83, 87, 92, 97, 101 кг.

Медиана равна 87 кг (половина телят имеет вес меньше 87 кг, а половина – больше 87 кг).

Вес 8 телят: 75, 80, 83, 87, 92, 97, 101, 105 кг.

Медиана равна (87+92)/2=89,5 кг.

Медиана в интервальном ряду рассчитывается следующим образом:

Сначала исчисляют порядковый номер медианы по формуле Понятие средней величины. Виды средних и их соотношение - №17 - открытая онлайн библиотека и строят ряд накопленных частот Si=fi+Si-1 (S1=f1).

Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, соответствует медианный интервал. Медиана равна:

Понятие средней величины. Виды средних и их соотношение - №18 - открытая онлайн библиотека ,

где x0 – нижняя граница медианного интервала;

h – величина медианного интервала;

fi – частота i-го интервала;

Sме-1 – сумма накопленных частот в интервале, предшествующем медианному;

fMe – частота медианного интервала.

ПримерИмеются данные о заработной плате рабочих:

Месячная з/п, $ Количество рабочих, fi Накопленные частоты, Si
до 800
800 – 1000
1000 – 1200
1200 – 1400
1400 и более
Итого -

Понятие средней величины. Виды средних и их соотношение - №19 - открытая онлайн библиотека , следовательно, медианный интервал 1000-1200.

Понятие средней величины. Виды средних и их соотношение - №20 - открытая онлайн библиотека $ (половина рабочих имеет заработную плату ниже 1050$, а половина – выше 1050$).

Квартили – значения признака, делящие ранжированную совокупность на четыре равные по числу единиц части.

Номер квартильного интервала рассчитывается аналогично медианному в соотношении ¼ к совокупности. 1-й квартиль равен:

Понятие средней величины. Виды средних и их соотношение - №21 - открытая онлайн библиотека ,

xQ1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25%),

h – величина интервала,

fQ1 – частота квартильного интервала,

SQ1-1 – сумма накопленных частот в интервале, предшествующего квартильному.

2-й квартиль:

Q2=Мe.

3-й квартиль:

Понятие средней величины. Виды средних и их соотношение - №22 - открытая онлайн библиотека ,

обозначения аналогичны 1-му квартилю с изменением на номер интервала.

Пример. По данным примера 6.9.

Понятие средней величины. Виды средних и их соотношение - №23 - открытая онлайн библиотека , следовательно, 1-й квартильный интервал 800-1000.

Понятие средней величины. Виды средних и их соотношение - №24 - открытая онлайн библиотека $ (25% рабочих получает заработную плату ниже 900$).

Понятие средней величины. Виды средних и их соотношение - №25 - открытая онлайн библиотека , следовательно, 3-й квартильный интервал 1000-1200.

Понятие средней величины. Виды средних и их соотношение - №26 - открытая онлайн библиотека $ (25% рабочих получает заработную плату выше 1175$).

Децили – значения признака, делящие ранжированную совокупность на десять равных по числу единиц частей.

Вычисляются они по той же схеме, что и медиана, и квартили. Обычно рассчитывают только первый и девятый децили:

Понятие средней величины. Виды средних и их соотношение - №27 - открытая онлайн библиотека ,

Понятие средней величины. Виды средних и их соотношение - №28 - открытая онлайн библиотека .

Пример. По данным примера 6.9.

Понятие средней величины. Виды средних и их соотношение - №29 - открытая онлайн библиотека , следовательно, 1-й децильный интервал до 800.

Понятие средней величины. Виды средних и их соотношение - №30 - открытая онлайн библиотека $ (10% рабочих получает заработную плату ниже 800$).

Понятие средней величины. Виды средних и их соотношение - №31 - открытая онлайн библиотека , следовательно, 9-й децильный интервал 1200-1400.

Понятие средней величины. Виды средних и их соотношение - №32 - открытая онлайн библиотека $ (10% рабочих получает заработную плату выше 1400$).

Децильный коэффициент Понятие средней величины. Виды средних и их соотношение - №33 - открытая онлайн библиотека . Широко применяется при изучении дифференциации доходов.

Пример.По данным примера 6.11.

Понятие средней величины. Виды средних и их соотношение - №34 - открытая онлайн библиотека (10% самых высокооплачиваемых работников получают зарплату в 1,75 раза больше 10% самых низкооплачиваемых работников).

Мода – значение признака, которое чаще других встречается в изучаемом ряду распределения.

Мода для дискретного ряда определяется как варианта, имеющая наибольшую частоту.

Для интервального ряда:

Понятие средней величины. Виды средних и их соотношение - №35 - открытая онлайн библиотека ,

где x0 –нижняя граница модального интервала,

d- величина модального интервала,

fMo-1 - частота интервала, предшествующего модальному,

fMo - частота модального интервала,

fMo+1 - частота интервала, следующего за модальным.

Пример. По данным примера 6.9.

Модальный интервал с наибольшей частотой fi = 4 равен 1000-1200.

Понятие средней величины. Виды средних и их соотношение - №36 - открытая онлайн библиотека $ (наибольшее число рабочих получает зарплату 1050$).

Показатели размера вариации

Вариация – изменение значения признака при переходе от одной единицы совокупности к другой.

Для измерения вариации используются следующие показатели.

1. Размах вариации – показывает, в каких пределах колеблется размер признака, образующего ряд распределения

R=xmax-xmin,

где xmax – максимальное значение признака,

xmin – минимальное значение признака.

2. Среднее линейное отклонение – показывает, на сколько в среднем отклоняются значения признака от его среднего значения.

По несгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №37 - открытая онлайн библиотека .

По сгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №38 - открытая онлайн библиотека ,

где k – число групп.

3. Дисперсия – средний квадрат отклонений индивидуальных значений признака от их средней величины.

По несгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №39 - открытая онлайн библиотека .

По сгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №40 - открытая онлайн библиотека .

Дисперсия имеет большое значение в статистическом анализе. Однако ее не всегда удобно использовать, потому что размерность дисперсии равна квадрату размерности изучаемого признака. Поэтому рассчитывают среднее квадратическое отклонение.

4. Среднее квадратическое отклонение – показывает, на сколько в среднем отклоняются значения признака от его среднего значения (обладает лучшими свойствами, чем среднее линейное отклонение).

По несгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №41 - открытая онлайн библиотека .

По сгруппированным данным

Понятие средней величины. Виды средних и их соотношение - №42 - открытая онлайн библиотека .

Выражается в тех же единицах измерения, что и признак.

5. Коэффициент вариации – показывает степень интенсивности вариации, однородность совокупности.

Понятие средней величины. Виды средних и их соотношение - №43 - открытая онлайн библиотека

Совокупность считается однородной, если Понятие средней величины. Виды средних и их соотношение - №44 - открытая онлайн библиотека , где Vнорм – нормативная величина коэффициента вариации (для разных совокупностей может колебаться от 1% до 30%).

6. Линейный коэффициент вариации – отношение среднего линейного отклонения к средней.

Понятие средней величины. Виды средних и их соотношение - №45 - открытая онлайн библиотека

Пример. Распределение коров фермы по годовому удою молока.

Годовой удой молока от коровы, тыс. кг (xi) Число коров, fi Средняя величина признака xi*fi Понятие средней величины. Виды средних и их соотношение - №46 - открытая онлайн библиотека Понятие средней величины. Виды средних и их соотношение - №47 - открытая онлайн библиотека Понятие средней величины. Виды средних и их соотношение - №48 - открытая онлайн библиотека Понятие средней величины. Виды средних и их соотношение - №49 - открытая онлайн библиотека
до 2 1,5 -1,3 5,2 1,69 6,76
2-3 2,5 -0,3 0,6 0,09 0,18
3-4 3,5 +0,7 1,4 0,49 0,98
4-5 4,5 4,5 +1,7 1,7 2,89 2,89
5 и более 5,5 5,5 +2,7 2,7 7,29 7,29
Итого     11,6   18,1

1) Средняя арифметическая Понятие средней величины. Виды средних и их соотношение - №50 - открытая онлайн библиотека тыс. кг.

2) Размах вариации R = 6 – 1 = 5 тыс. кг.

3) Среднее линейное отклонение Понятие средней величины. Виды средних и их соотношение - №51 - открытая онлайн библиотека тыс. кг.

4) Дисперсия Понятие средней величины. Виды средних и их соотношение - №52 - открытая онлайн библиотека тыс. кг2.

5) Среднее квадратическое отклонение Понятие средней величины. Виды средних и их соотношение - №53 - открытая онлайн библиотека Понятие средней величины. Виды средних и их соотношение - №54 - открытая онлайн библиотека тыс. кг.

6) Коэффициент вариации Понятие средней величины. Виды средних и их соотношение - №55 - открытая онлайн библиотека - совокупность неоднородна.

7) Линейный коэффициент вариации Понятие средней величины. Виды средних и их соотношение - №56 - открытая онлайн библиотека .

Показатели вариации альтернативного признака.

Доля вариантов обладающих изучаемым признаком обозначается р, а доля вариантов не обладающих изучаемым признаком – q=1-p.

Средняя величина: Понятие средней величины. Виды средних и их соотношение - №57 - открытая онлайн библиотека .

Дисперсия: Понятие средней величины. Виды средних и их соотношение - №58 - открытая онлайн библиотека .

Пример. Совокупность новорождённых – 205 чел., девочки – 100 чел.

Доля девочек р = 100/205=0,488,

Доля мальчиков q = 105/205=0,512,

Дисперсия σ2 = 0,488*0,512= 0,2498