Аналитическое выравнивание методом наименьших квадратов

Проверка ряда динамики на наличие тренда. Метод укрупнения интервалов. Метод сглаживания скользящей средней.

Простейший метод сглаживания уровней ряда – укрупнения интервалов, для определяется итоговое значение или средняя величина исследуемого показателя. Этот метод особенно эффективен, если первоначальные уровни ряда относятся к коротким промежуткам времени. Например, если имеются данные о ежесуточном производстве мороженого на предприятии за месяц, то, естественно, в таком ряду возможны значительные колебания уровней, так как чем меньше период, за который приводятся данные, тем больше влияние случайных факторов.

По своей сути метод скользящей средней похож на метод укрупнения интервалов, но в данном случае фактические уровни заменяются средними уровнями, рассчитанными для последовательно подвижных (скользящих) укрупненных интервалов, охватывающих m уровней ряда. Например, если принять m=3, то сначала рассчитывается средняя величина из первых трех уровней, затем находится средняя величина из 2-го, 3-го и 4-го уровней, потом из 3-го, 4-го и 5-го и т.д., т.е. каждый раз в сумме трех уровней появляется новый уровень, а два остаются прежними, что и обусловливает взаимопогашение случайных колебаний в средних уровнях. Рассчитанные из m членов скользящие средние относятся к середине (центру) каждого рассматриваемого интервала.

Аналитическое выравнивание методом наименьших квадратов.

Под аналитическим выравниванием понимают определение основной проявляющейся во времени тенденции развития изучаемого развития. При этом развитие предстает как бы в зависимости только от течения времени. Для расчета параметров уравнения тренда обычно используют метод наименьших квадратов. Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда.

Для линейного тренда нормальные уравнения МНК имеют вид:

где yi – уровни исходного ряда динамики;

ti – номера периодов или моментов времени;

n – число уровней ряда.