Далее: 16. СТАТИСТИКА III: ИЗУЧЕНИЕ ВЗАИМОСВЯЗЕЙ МЕЖДУ НЕСКОЛЬКИМИ ПЕРЕМЕННЫМИ

К оглавлению

ПРИМЕЧАНИЯ

1 Об определении этого понятия см.: Freeman L.C. Elementary Applied Statistics: For Students in Behavioral Science – N.Y.: Wiley, 1965.
Вернуться к тексту

2 Полное объяснение статистической значимости требует гораздо более пространного изложения, чем мы можем позволить себе здесь. Читателю можем посоветовать обратиться к одному из изданий по статистике, перечисленных в списке дополнительной литературы к гл. 16. Наш разговор, по сути дела, будет ограничен тем, что такое ошибка первого порядка, не принимая во внимание так называемую нулевую гипотезу (гипотезу, предполагающую, что между двумя переменными не существует никакой связи).
Вернуться к тексту

3 Собственно, коэффициент, который мы здесь описываем, – это λ или λa (ассиметричная), измерение, которое проверяет наличие связи только в одном направлении (от независимой переменной к зависимой). Тест на проверку истинной λ связи тоже возможен (см.: Freeman, p. 71–76).
Вернуться к тексту

4 В таких условиях λ может быть ненадежна, но мы включили этот сюжет для того, чтобы облегчить понимание концепции связи в целом. Соответствующий коэффициент – коэффициент Кендалла – может быть более надежен, но его определение более сложная процедура для начинающих статистиков.
Вернуться к тексту

5 Из всего этого, таким образом, следует, что единственный тип связи, который измеряется коэффициентом r, – это линейная (прямолинейная) связь. Существуют и другие статистические приемы, позволяющие измерить более сложные типы взаимосвязей (например, криволинейную связь); можно также преобразовать интервальные данные в порядковые категории и прийти, таким образом, к более простым типам взаимосвязей.
Вернуться к тексту

Далее: 16. СТАТИСТИКА III: ИЗУЧЕНИЕ ВЗАИМОСВЯЗЕЙ МЕЖДУ НЕСКОЛЬКИМИ ПЕРЕМЕННЫМИ - №1 - открытая онлайн библиотека

Мангейм Дж.Б., Рич Р.К. Политология. Методы исследования: Пер. с англ. / Предисловие А.К. Соколова. – М.: Издательство “Весь Мир”, 1997. – 544 с.

Красным шрифтом в квадратных скобках обозначается конец текста на соответствующей странице печатного оригинала данного издания

СТАТИСТИКА III: ИЗУЧЕНИЕ ВЗАИМОСВЯЗЕЙ МЕЖДУ НЕСКОЛЬКИМИ ПЕРЕМЕННЫМИ

Одномерный и двумерный статистический анализ, описанный в предыдущих главах, часто бывают совершенно необходим для понимания объекта, который мы изучаем. Однако одномерный и двумерный анализ почти никогда не обеспечивает убедительной проверки гипотез или теорий, из которых они были извлечены. Для того чтобы проверить какую-либо гипотезу, необходимо исключить главную альтернативную конкурирующую гипотезу. И хотя четко поставленные исследовательские задачи иногда позволяют нам не принимать во внимание альтернативную гипотезу, обычно предпочитают проверять справедливость конкурирующей гипотезы, опираясь на анализ данных, а не на постановку задач исследования. А это требуетмногомерного анализа, т.е. одновременного анализа взаимосвязей между тремя и более переменными.[c.438]

АНАЛИЗ ТАБЛИЦ

Многие из статистических методов, уже описанных нами, могут применяться в многомерном анализе1.

Для иллюстрации мы можем использовать очень упрощенный пример и предложить метод, которым таблицы корреляции и бипараметрическая статистика могут быть адаптированы для проведения многомерного статистического анализа. Предположим, что мы хотим исследовать, какая связь существует между политическим мировоззрением и получением образования в колледже. Мы можем , предположить, что обучение в колледже дает людям некую опору для поддержания статус-кво и подготавливает их к относительно хорошему функционированию в рамках существующей социоэкономической системы. Тогда возможно мы начнем с гипотезы, что те, кто окончил колледж, будут более консервативны, чем те, кто не имел такой возможности. Чтобы проверить эту гипотезу, нам надо протестировать выборку из 50 респондентов, окончивших колледж и еще 50 таковых, в колледже не учившихся.[c.438]

Таблица 16.1.