Performance in service

Bridges are designed, first, to carry their own permanent weight, or dead load; second, to carry traffic, or live loads; and, finally, to resist natural forces such as winds or earthquakes.

Live load and dead load. The primary function of a bridge is to carry traffic loads: heavy trucks, cars, and trains. Engineers must estimate the traffic loading. On short spans, it is possible that the maximum conceivable load will be achieved-that is to say, on spans of less than 100 feet (30 metres), four heavy trucks may cross at the same time, two in each direction. On longer spans of several thousand feet, the maximum conceivable load is such a remote possibility (imagine the Golden Gate Bridge with only heavy trucks crossing bumper-to-bumper in each direction at the same time) that the cost of designing for itis unreasonable. Therefore, engineers use probable loads a basis for design. In order to carry traffic, the structure must have some weight, and on short spans this dead load weight is usually less than the live loads. On longer spans, however, the dead load is greater than live loads, and, as spans get longer, it becomes more important to design forms that minimize dead load. In general, shorter spans are built with beams, hollow boxes, trusses, arches, and continuous versions of the same, while longer spans use cantilever, cable-stay, and suspension forms. As spans get longer, questions of shape, materials, and form become increasingly important. New forms have evolved to provide longer spans with more strength from less material. Forces of nature. Dead and live weight are essentially Wind loads vertical loads, whereas forces from nature may be either vertical or horizontal. Wind causes two important loads, one called static and the other dynamic. Static wind load is the horizontal pressure that tries to push a bridge side­ways. Dynamic wind load gives rise to vertical motion, creating oscillations in any direction. Like the breaking of an overused violin string, oscillations are vibrations that can cause a bridge to fail. If a deck is thin and not properly shaped and supported, it may experience dangerous vertical or torsional (twisting) movements.

The expansion and contraction of bridge materials by heat and cold have been minimized by the use of expansion joints in the deck along with bearings at the abutments and at the tops of piers. Bearings allow the bridge to react to varying temperatures without causing detrimental stress to the material. In arches, engineers sometimes design hinges to reduce stresses caused by temperature movement.

Modern bridges must also withstand natural disasters such as hurricanes and earthquakes. In general, earth­quakes are best withstood by structures that carry as light a dead weight as possible, because the horizontal forces that arise from ground accelerations are proportional to the weight of the structure. (This phenomenon is explained by the fundamental Newtonian law of force equals mass times acceleration.) For hurricanes, it is generally best that the bridge be aerodynamically designed to have little solid material facing the winds, so that they may pass through or around the bridge without setting up dangerous oscillations.